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Differential privacy is the standard method for privacy-preserving data analysis. The importance of having

strong guarantees on the reliability of implementations of differentially private algorithms is widely recognized

and has sparked fruitful research on formal methods. However, the design patterns and language features

used in modern DP libraries as well as the classes of guarantees that the library designers wish to establish

often fall outside of the scope of previous verification approaches.

We introduce a program logic suitable for verifying differentially private implementations written in

complex, general-purpose programming languages. Our logic has first-class support for reasoning about

privacy budgets as a separation logic resource. The expressiveness of the logic and the target language allow

our approach to handle common programming patterns used in the implementation of libraries for differential

privacy, such as privacy filters and caching. While previous work has focused on developing guarantees for

programs written in domain-specific languages or for privacy mechanisms in isolation, our logic can reason

modularly about primitives, higher-order combinators, and interactive algorithms.

We demonstrate the applicability of our approach by implementing a verified library of differential privacy

mechanisms, including an online version of the Sparse Vector Technique, as well as a privacy filter inspired

by the popular Python library OpenDP, which crucially relies on our ability to handle the combination of

randomization, local state, and higher-order functions. We demonstrate that our specifications are general

and reusable by instantiating them to verify clients of our library. All of our results have been foundationally

verified in the Rocq Prover.

1 Introduction
Differential privacy [15, 16] (DP) is a collection of programming techniques to release aggregate

information from a database while providing statistical guarantees about the privacy of individual

user data. DP has been used widely in government and industrial applications to protect critical

personal information (medical, financial, demographic, behavioral). The correctness of the imple-

mentations of DP is therefore crucial: logic- or implementation-level bugs can lead to catastrophic

failure of the promised privacy guarantees.

The importance of having trustworthy implementations of DP is widely recognized. On the one

hand, it has led to significant research in programming language and program verification. On the

other, industrial developments of DP are routinely accompanied by pen-and-paper proofs of their

claimed privacy properties. The OpenDP collaboration
1
even goes as far as to collect a proof for

each element of the library, which are checked by a “privacy proof review board”.

DP provides strong statistical guarantees that the data contributed by an individual does not

influence the result of the analysis by too much, and hence cannot be recovered by observing the

outcome. This is achieved by adding a small amount of random noise to each step of data analysis

that could leak private information. This way, even if the input data changes by a small amount

1
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(say, the data of one user in a database), we can expect the output of the noisy program output to

be similar, and an observer will not be able to tell whether the change comes from the noise or a

change in inputs. The strength of the privacy guarantee of differentially private (dp) programs is

governed by a parameter 𝜀 ∈ R≥0, that controls the overall probability that any user’s privacy is

compromised; a lower 𝜀 means a more private program.

Managing the privacy budget. A central idea of programming with DP is to think of the

parameter 𝜀 that controls the noise distribution as the “privacy budget”. To ensure that the whole

program 𝑃 , written as a sequence of computations 𝑃 = 𝑐0; 𝑐1; . . . ; 𝑐𝑛 , is 𝜀-differentially private (𝜀-dp),

we can “allocate” some part 𝜀𝑖 of our budget to each part 𝑐𝑖 of the program and check that the

probability that 𝑐𝑖 compromises privacy is controlled according to 𝜀𝑖 . So long as the sum of the

error terms 𝜀𝑖 is below the global budget 𝜀, the program as a whole is 𝜀-dp. This principle is known

as the sequential composition theorem of DP, and it justifies our budget intuition of the privacy

parameter: 𝜀 represents a resource that can be split according to the structure of the program, and

is consumed by computing noisy results from a database.

The most widely used deployments of DP are based on dynamic techniques for tracking the pri-

vacy budget via a trusted library such as OpenDP (written in Python, Rust) or Google’s Differential

Privacy library (C++, Go, Java). Rather than specifying exactly how much 𝜀𝑖 each part of a program

consumes, the budget consumption of the completed computations 𝑐0; . . . ; 𝑐𝑖−1 is tracked, and a

runtime check ensures that enough budget for 𝑐𝑖 remains.

1.1 The Challenges of Verifying DP Frameworks
Most practical DP frameworks use “advanced” programming language features like higher-order

functions (e.g., in the form of classes or function pointers) and dynamically allocated, local state

(e.g., via class-private attributes). This is necessary to enable the modular construction of private

programs through an API, where a library client does not have to concern themselves with the

management of the privacy budget and correct application of noise to the results. To be able to reason

compositionally, privacy proofs of a library API should likewise support modular specifications. We

consider three representative challenges that arise from reasoning about libraries for DP:

(i) encapsulating dynamic, fine-grained budget accounting,

(ii) interactive or “online” data analysis,

(iii) budget minimization via caching.

As we shall see shortly, all three of these techniques rely on stateful randomized higher-order

functions to implement features that are essential to the modular construction of dp programs. To

verify modular API specifications we must thus support higher-order reasoning about local state.

We illustrate the programming patterns via Python code snippets inspired by OpenDP, but the

challenges also arise in, e.g., the C++ implementation of Google’s Differential Privacy library.
2

Although the verification approach developed in this paper is for an ML-like core language (§2.3)

rather than Python, it can faithfully represent the salient aspects of these Python programs.

1.1.1 Dynamic budget accounting. An essential functionality of these libraries is that they

offer privacy filters [36] that encapsulate the intricate reasoning about the privacy budget in a

core, trusted API. A privacy filter tracks the privacy cost that a program has incurred up to the

current execution point 𝑐0; . . . ; 𝑐𝑖−1, and only executes 𝑐𝑖 if enough budget remains. The example

implementation of a simplified PrivacyFilter in Figure 1 is initialized with some budget and

provides a single try_run(cost, f) method, which only runs f if there is indeed at least enough

2
See, e.g., https://github.com/google/differential-privacy/blob/0a3b05a65f7ed8de/cc/accounting/accountant.cc#L46
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budget left to cover its cost. So long as each mechanism f correctly reports its budget consumption

(cost), the filter will ensure that the total privacy cost will never exceed the global budget.

class PrivacyFilter:
def __init__(self, budget):

self.budget_left = budget

def try_run(self, cost, f):
if self.budget_left < cost :

return None
self.budget_left -= cost
return f()

Fig. 1. PrivacyFilter ensures that no client can exceed the privacy budget.

Centralized dynamic budget management simplifies the privacy analysis of programs and allows

for scaling to industrial applications. Importantly, dynamically computed bounds enable a tighter

analysis of the privacy cost compared to static type checks [18, 27]. Recall that the usual sequential

composition theorem of DP requires that all 𝜀𝑖 be chosen upfront. The adaptive composition theorem

[36] for DP lifts this restriction and allows the analyst to adaptively chose each 𝜀𝑖 depending on the

results of previous (private) computations. Despite the successes of type- and program-logic-based

analyses of DP, none of the existing systems can be used to specify and verify the correctness of

implementations of privacy filters.

1.1.2 Interactive data analysis. Interactivity is central to real-world data analysis under DP.

Given a new dataset, a data analyst does not just issue a static set of queries. Instead, they may

compute some summary statistics to explore what ranges of values or categories of responses are

of interest, and construct further queries based on those observations. This interactive or “online”

style of analysis is crucial for practical utility [12, 16, 25]. A standard way to represent interactive

computations is as streams: given a stream of queries, a private interactive mechanism should

produce a stream of results.

The AboveThreshold mechanism in Figure 2 constructs a stream of booleans from a stream

of queries as an iterator. The 𝑛-th boolean indicates whether 𝑞𝑛 was above the threshold 𝑇 , after

suitable Laplace noise was added. Crucially, the queries themselves are provided as an iterator

rather than as a precomputed list, and 𝑞𝑛 is only evaluated in the 𝑛-th call to __next__. The
AboveThreshold mechanism is 𝜀-dp because the stream stops producing results after the first time

True is returned; this is a standard result in DP but challenging to prove formally because it does

not follow simply from the sequential composition theorem.

class AboveThreshold:
def __init__(self, eps, T, queries, db):

self.eps = eps
self.T = Laplace(T, eps/2)
self.queries = queries
self.db = db
self.halted = False

def __iter__(self):
return self

def __next__(self):
if self.halted:

raise StopIteration
q = next(self.queries)
v = Laplace(q(self.db), self.eps/4)
b = (self.T <= v)
self.halted = b
return b

Fig. 2. The classic Above Threshold interactive mechanism.

Any realistic verification framework for DP must therefore capture not only isolated, static

mechanisms but also their behavior as interactive, stateful processes that maintain internal state

and privacy budget across calls.
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1.1.3 Budget minimization via caching. Certain results (e.g., the number of non-zero entries)

have to be calculated many times over as part of different analysis passes on a dataset. This

can be wasteful in practical applications, since each private computation consumes some of the

privacy budget, even if the same result has already been computed elsewhere in the program.

Caching provides a solution to this problem: if the noisy results of queries are cached, then a

repeated query can simply reuse the prior noisy result without incurring any privacy cost. Recent

implementations of privacy frameworks have studied increasingly sophisticated caching strategies

for DP workloads [25, 26, 30, 34], but even simple implementations of caching via memoization

can lead to substantial savings in privacy budget in practical workloads [34][25, Fig. 3].

The implementation of memoization mk_query_cache in Figure 3 locally allocates a cache
associated to a mechanism add_noise and a dataset db and returns a closure f which can be used

subsequently to privately evaluate queries on db. Although it is a simple general-purpose caching

mechanism, studying it formally requires reasoning about local state and higher-order functions.

This places it outside of the scope of existing systems.

def mk_query_cache(add_noise, db):
cache = {}
def f(query):

if query in cache:
return cache[query]

v = add_noise(query(db))
cache[query] = v
return v

return f

Fig. 3. A generic caching mechanism.

1.2 Formal Guarantees for Differential Privacy
DP lends itself well to the analysis via standard PL methods due to its compositional nature. We

distinguish two main classes of approaches. Type-based approaches [1, 8, 13, 18, 27, 28, 33, 35, 40–

42] use a static typing discipline to ensure that the programs accepted by the system are dp. These

approaches benefit from high degrees of automation. Most type-based approaches, however, do not

handle mutable state. More generally, the complex nature of the type systems required (dependent-,

linear-, contextual-, or refinement types, or combinations thereof), hinders their integration with

mainstream programming languages.

On the other hand, relational probabilistic Hoare logics such as apRHL [6, 7, 9], are more

expressive but require more user effort in the form of manual or interactive proofs. These methods

works particularly well when the program logic is defined with respect to a relatively simple

denotational semantics of programs as subdistributions. This, however, generally restricts the

applicability of the method to first-order programs. HO-RPL [2] extends the previous approach to

support higher-order functions by constructing a more sophisticated semantic model, but general

recursion or dynamic allocation and higher-order state are still unsupported. In a similar vein,

some projects verified the privacy of sampling algorithms and simple mechanisms directly in the

denotational semantics of programs [14, 39]. In summary, these approaches work well for the

verification of algorithms in isolation, but do not focus on supportingmodular program verification.

1.3 Modular Verification for DP Libraries in Clutch-DP
To address the challenges arising from the verification of DP libraries, we introduce the relational ap-

proximate probabilistic higher-order separation logic Clutch-DP. Clutch-DP supports higher-order

functions such as PrivacyFilter and mk_query_cache via quantification over specifications, and
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references storing closures as they occur in the implementation of iterators (e.g., AboveThreshold)
via impredicative invariants à la Iris [24]. Building on previous relational separation logics [20, 21],

we internalize the privacy budget of DP in Clutch-DP as a first-class separation logic resource.

These privacy credits can be tracked in invariants and interact with the heap and with higher-order

functions that consume a privacy budget in flexible ways. We prove that the usual rules for (se-

quential) relational separation logic [17] are sound in the probabilistic setting. To reason about

privacy of primitives, we prove novel relational sampling rules for the Laplacian; in particular, we

internalize a proof technique based on choice couplings [4] as a logical rule, which, in particular, is

used in the privacy proof of AboveThreshold. We apply Clutch-DP to a number of case studies

inspired by the challenge problems described above. Our specifications of, e.g., AboveThreshold
are compositional and reusable: we derive the privacy of clients and more complex mechanisms

from the specifications of the building blocks, without referring to implementation details.

Contributions. To summarize, we make the following contributions.

(1) A higher-order separation logic for DP which internalizes privacy credits as first-class,

composable logical resources and which supports heap allocation and higher-order closures.

(2) New probabilistic sampling rules, including a Laplacian rule that enables selective recovery of
privacy credits, which can be used to verify examples whose privacy analysis goes beyond

composition theorems.

(3) A library of reusable, abstract specifications for commonDP primitives (Laplace, AboveThresh-

old, Sparse Vector Technique, Report-Noisy-Max, Privacy Filters, Caching via Memoization)

that cleanly separate mechanism proof from client reasoning.

(4) Client case studies that highlight both expressiveness and reusability of specifications and

that demonstrate that our approach successfully addresses the challenges outlined above

(dynamic budget accounting, interactive data analysis, and budget minimization via caching).

(5) Mechanized proofs: a foundational formalization of the logic and all case studies in the Rocq

Prover together with an adequacy theorem connecting our logic to standard DP.

Outline. In §2 we briefly recall the basic notions of DP and define the RandML programming

language used in the remainder of the paper. In §3 we define the Clutch-DP logic and explain how

it relates to DP. In §4 we illustrate reasoning in Clutch-DP via a number of case studies addressing

the challenges set out in §1.1. The soundness of Clutch-DP is addressed in §5. Finally, in §6 we

survey related work, before concluding in §7.

2 Differential Privacy and Programming Language Preliminaries
We briefly recall the elements of probability theory §2.1 and DP §2.2 we need to refer to, and

formally define the programming language §2.3 used throughout the paper.

2.1 Probability Theory
Since we do not assume a priori that all programs we study terminate, we allow programs to “lose

mass” on diverging runs and define the operational semantics using probability sub-distributions.

Definition 2.1. A discrete subdistribution (henceforth simply distribution) on a countable set 𝐴
is a function 𝜇 : 𝐴→ [0, 1] such that

∑
𝑎∈𝐴 𝜇 (𝑎) ≤ 1. The distributions on 𝐴 are denoted by D(𝐴).

In §2.3, we will define the operational semantics of RandML in terms of the distribution monad.
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Lemma 2.2. The discrete distribution monad induced by D has operations

ret : 𝐴→ D(𝐴) bind : (𝐴→ D(𝐵)) → D(𝐴) → D(𝐵)

ret(𝑎) (𝑎′) ≜
{
1 if 𝑎 = 𝑎′

0 otherwise
bind(𝑓 , 𝜇) (𝑏) ≜

∑︁
𝑎∈𝐴

𝜇 (𝑎) · 𝑓 (𝑎) (𝑏)

We write (𝜇 ≫= 𝑓 ) for bind(𝑓 , 𝜇).

2.2 Differential Privacy
For background information on DP see, e.g., Dwork and Roth [16] and Cowan et al. [12].

Defining privacy. The definition of DP captures the intuition that it is hard to reconstruct

information about any individual in a database from the output of a dp program.

Definition 2.3. A function 𝑓 : DB→ D(𝑋 ) is (𝜀, 𝛿)-differentially private (short: “𝑓 is (𝜀, 𝛿)-dp”)
if Pr𝑓 (𝑥 ) [𝜙 ] ≤ 𝑒𝜀 · Pr𝑓 (𝑦) [𝜙 ] + 𝛿 for all adjacent 𝑥,𝑦 : DB and all predicates 𝜙 ⊆ 𝑋 . If 𝑓 is (𝜀, 0)-dp
we simply say that 𝑓 is 𝜀-dp.

A function is thus (𝜀, 𝛿)-dp if it amplifies the probability of any observation 𝜙 by at most 𝑒𝜀 , or

by more than that with probability at most 𝛿 . A small value for 𝜀 and 𝛿 thus means strong privacy

guarantees. The definition of DP is parametrized by a type of databases DB and an adjacency

relation. Clutch-DP can work with any database type and adjacency relation, but a common choice

is to think of a database as a list of rows where each row is a tuple of a fixed size. If the type of

databases comes with a notion of distance 𝑑DB : DB → R≥0 we say that two databases 𝑥,𝑦 are

adjacent if 𝑑DB (𝑥,𝑦) ≤ 1. For instance, if 𝑑DB (𝑥,𝑦) is the number of rows where 𝑥 and 𝑦 differ, then

adjacency means they only differ in one row.
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strating 0.7-DP: L1

0.7 (2) ≤ 𝑒0.7 · L0

0.7 (2) .

Adding noise: the Laplace mechanism. To prove

that any program is dp, we need primitives that add ran-

dom noise. The prototypical example of a noise mecha-

nism that achieves DP is the Laplacian distribution. How-

ever, since the Laplacian is a continuous distribution on

R, an implementation of a Laplacian sampler would have

to work with exact real arithmetic, since implementations

using floats lead to well-known privacy bugs [31].

We therefore work with the discrete Laplacian, the
distribution on Z obtained by discretizing the continuous

Laplacian. The discrete Laplacian with scale parameter

𝜀 and mean𝑚 has as probability mass function
3
[22, 23]:

L𝑚
𝜀 (𝑣) ≜

1

𝑊
· 𝑒−𝜀 · |𝑣−𝑚 | where𝑊 ≜

∑︁
𝑧∈Z

𝑒−𝜀 |𝑧 | (1)

Interpreting adjacency on Z as being at distance at most 𝑐 , we have the following result.

Theorem 2.4 ([19]). (𝜆𝑚. L𝑚
𝜀/𝑐 ) : Z→ D(Z) is 𝜀-dp.

As a direct consequence, given any function 𝑓 : DB→ Z such that |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 1 for adjacent

datasets 𝑥,𝑦 : DB, the function (𝜆𝑚. L𝑚
𝜀 ) ◦ 𝑓 : DB→ D(Z) is 𝜀-dp.

3
NB: The weight𝑊 is a geometric series over Z (hence why L𝜀 is also called the (two-sided) 𝜀-geometric) with the closed

form L𝑚
𝜀 (𝑣) = 𝑒𝜀 −1

𝑒𝜀+1 · 𝑒
−𝜀 · |𝑣−𝑚 |

[11]. We adopt the convention that L𝑚
𝜀 = ret(𝑚) if 𝜀 ≤ 0.
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Composing DP. Differentially private functions satisfy a number of composition laws that can

help structure and simplify the privacy verification of larger programs.

Lemma 2.5. DP is stable under post-processing: if 𝑓 : 𝐴 → D(𝐵) is (𝜀, 𝛿)-dp then for any
𝑔 : 𝐵 → 𝐶 , the function 𝜆 𝑥. (𝑓 (𝑥) ≫= 𝜆 𝑦. ret 𝑔(𝑦)) : 𝐴→ D(𝐶) is (𝜀, 𝛿)-dp.

When two dp functions are composed sequentially, their privacy parameters add up. Due to the

post-processing property this holds even if the later computations can see the results of earlier

computations. We only show the case for two functions, but the lemma directly generalizes to

arbitrary 𝑘-fold composition for 𝑘 ∈ N.

Lemma 2.6 (Seqential Composition). Let 𝑓 : DB→ D(𝐵) be (𝜀1, 𝛿1)-dp and let 𝑔 be a function
𝑔 : DB × 𝐵 → D(𝐶) such that (𝜆 𝑥. 𝑔(𝑥, 𝑏)) : DB → D(𝐶) is (𝜀2, 𝛿2)-dp for all 𝑏 ∈ 𝐵. Then
𝜆 𝑥. (𝑓 (𝑥) ≫= 𝜆 𝑏. 𝑔(𝑥, 𝑏)) is (𝜀1 + 𝜀2, 𝛿1 + 𝛿2)-dp.

Another useful composition law holds for functions which increase the distance between inputs

by at most a fixed amount 𝑐 in the following sense.

Definition 2.7. We say that 𝑓 : 𝐴 → 𝐵 is 𝑐-sensitive (also: “𝑐-stable”) if for all 𝑥,𝑦 ∈ 𝐴, the
bound 𝑑𝐵 (𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑐 ·𝑑𝐴 (𝑥,𝑦) holds, where the distances 𝑑𝐴, 𝑑𝐵 are taken with respect to a metric
space structure on 𝐴 and 𝐵.

Note that if 𝑓 : 𝐴 → 𝐵 is 𝑐-sensitive and 𝑔 : 𝐵 → 𝐶 is 𝑑-sensitive then 𝑔 ◦ 𝑓 is (𝑐 ·𝑑)-sensitive.
The following metric composition law then generalizes the remark following Theorem 2.4.

Lemma 2.8. If 𝑓 : DB→ Z is 𝑐-sensitive then (𝜆𝑚. L𝑚
𝜀/𝑐 ) ◦ 𝑓 : DB→ D(Z) is 𝜀-dp.

2.3 The Language: Randomized ML
The RandML language that we consider is an ML-like language with higher-order recursive func-

tions and higher-order state that we extend with an operator Laplace𝑎 𝑏𝑚 that samples from the

Laplacian with scale (𝑎/𝑏) and mean𝑚. The syntax is defined by the grammar below.

𝑣,𝑤 ∈Val ::= 𝑧 ∈ Z | 𝑏 ∈ B | () | ℓ ∈ Loc | rec f x = 𝑒 | (𝑣,𝑤) | inl 𝑣 | inr 𝑣
𝑒 ∈ Expr ::= 𝑣 | x | rec f x = 𝑒 | 𝑒1 𝑒2 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | . . . | if 𝑒 then 𝑒1 else 𝑒2 | (𝑒1, 𝑒2) | fst 𝑒 | . . .

ref 𝑒1 | ! 𝑒 | 𝑒1 ← 𝑒2 | Laplace 𝑒1 𝑒2 𝑒3 | . . .
𝐾 ∈ Ectx ::= − | 𝑒 𝐾 | 𝐾 𝑣 | ref 𝐾 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣 | Laplace 𝑒1 𝑒2 𝐾 | Laplace 𝑒 𝐾 𝑣 | . . .
𝜎 ∈ State ≜ Loc fin−⇀Val 𝜌 ∈ Cfg ≜ Expr × State
In RandML, ref 𝑒1 allocates a new reference containing the value returned by 𝑒1, ! 𝑒 dereferences

the location 𝑒 evaluates to, and 𝑒1 ← 𝑒2 evaluates 𝑒2 and assigns the result to the location that 𝑒1
evaluates to. We may refer to a recursive function value rec f x = 𝑒 by its local name f. The heap is

represented as a (partial) finite map from locations to values, and evaluation happens right to left

as indicated by the evaluation context grammar Ectx.
The expression Laplace𝑎 𝑏𝑚 samples from the discrete Laplacian with scale 𝜀 = 𝑎/𝑏 and mean𝑚.

To avoid unnecessary complications with adding real numbers to the programming language, we

require the scale 𝜀 to be a rational number. Formally, in RandML, Laplace takes three integers

as input, but to keep our notation free from clutter we will simply write Laplace 𝜀𝑚 instead of

Laplace𝑎 𝑏𝑚 with 𝜀 = 𝑎/𝑏.

Operational Semantics. Program execution is defined by iterating step : Cfg → D(Cfg),
where step(𝜌) is the distribution induced by the single step reduction of the configuration 𝜌 .

The semantics is mostly standard. We first define head reduction and then lift it to reduction in
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an evaluation context 𝐾 . All non-probabilistic constructs reduce deterministically as usual, e.g.,
step((λ x. 𝑒) 𝑣, 𝜎) = ret(𝑒 [𝑣/x], 𝜎). We write 𝑒 ⇝ 𝑒′ if the evaluation is deterministic and holds

independently of the state, e.g., (λ x. 𝑒) 𝑣 ⇝ 𝑒 [𝑣/x] and fst(𝑣1, 𝑣2) ⇝ 𝑣1. The sampling operator

Laplace𝑎 𝑏𝑚 reduces according to the Laplacian with scale 𝑎/𝑏 and mean𝑚, i.e.,

step(Laplace𝑎 𝑏𝑚, 𝜎) (𝑣, 𝜎) ≜
{
L𝑚

𝑎/𝑏 (𝑣) for 𝑣 ∈ Z,
0 otherwise.

(2)

With the single step reduction step : Cfg → D(Cfg) defined, we next define a step-stratified
execution probability exec𝑛 : Cfg→ D(Val) by induction on 𝑛:

exec0 (𝑒, 𝜎) (𝑣) ≜
{
1 if 𝑒 ∈Val ∧ 𝑒 = 𝑣,
0 otherwise.

exec𝑛+1 (𝑒, 𝜎) (𝑣) ≜
{
1 if 𝑒 ∈Val ∧ 𝑒 = 𝑣,∑
(𝑒′,𝜎 ′ ) ∈Expr×State step(𝑒, 𝜎) (𝑒′, 𝜎 ′) · exec𝑛 (𝑒′, 𝜎 ′) (𝑣) otherwise.

That is, exec𝑛 (𝑒, 𝜎) (𝑣) is the probability of stepping from the configuration (𝑒, 𝜎) to a value 𝑣 in at

most 𝑛 steps. The probability that an execution, starting from configuration 𝜌 , reaches a value 𝑣 is

taken as the limit of its stratified approximations, which exists by monotonicity and boundedness:

exec(𝜌) (𝑣) ≜ lim𝑛→∞exec𝑛 (𝜌) (𝑣)
The interpretation of programs as distributions induces a natural notion of (𝜀, 𝛿)-DP for RandML

programs. Concretely, if 𝑓 ∈ Expr is a RandML function then for adjacent databases 𝑥,𝑦 it should

be the case that for all states 𝜎 ,

Prexec(𝑓 inj(𝑥 ), 𝜎 ) [𝜙 ] ≤ 𝑒𝜀 · Prexec(𝑓 inj(𝑦), 𝜎 ) [𝜙 ] + 𝛿 (3)

where inj : DB→Val embeds the type of databases into RandML values (we usually omit inj).
Note that in particular 𝑓 = (λ x. Laplace 𝜀 x) is 𝜀-dp in the sense of (3) by the definition of the

operational semantics (2) and Theorem 2.4.

3 Program Logic
In this section, we introduce the Clutch-DP logic, the soundness theorem of Clutch-DP, which

connects it to DP, and the new logical connectives and rules pertaining to the privacy budget

reasoning. On the surface, our logic looks similar to Approxis [21], but we remark that the underlying

model is different, and that it is designed to support our novel reasoning principles for DP.

The logical connectives. Clutch-DP is built on top of the Iris separation logic framework [24]

and inherits many of Iris’s logical connectives, a selection of which is shown below. Most of the

propositions are standard, such as separating conjunction 𝑃 ∗ 𝑄 and separating implication 𝑃 ∗ 𝑄 .
𝑃,𝑄 ∈ iProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑃 ∗ 𝑄 | 𝑃 ∗ 𝑄 |

ℓ ↦→ 𝑣 | ℓ ↦→s 𝑣 | E× (𝜀) | E+(𝛿) | {𝑃} 𝑒 ­ 𝑒′ {𝑣 𝑣 ′ . 𝑄} | . . .
Since DP is a relational property, Clutch-DP is a relational program logic that proves properties about

the execution of two programs 𝑒 and 𝑒′. The central logical connective capturing the relationship
between 𝑒 and 𝑒′ is the Hoare quadruple:

{𝑃} 𝑒 ­ 𝑒′ {𝑣 𝑣 ′ . 𝑄} (4)

Intuitively, this quadruple asserts that under the precondition 𝑃 , if the two programs 𝑒 and 𝑒′ evaluate
to results 𝑣 and 𝑣 ′ respectively, then the postcondition 𝑄 holds. Since the pre- and postcondition
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range over arbitrary Clutch-DP assertions, they can refer to the state or contain nested Hoare

quadruples, which will be useful to write specifications about higher-order functions.

Logical assertions about the heap come in two versions, one for 𝑒 and one for 𝑒′. The heap

points-to assertion that denotes ownership of location ℓ for the left-hand side program 𝑒 is written

as ℓ ↦→ 𝑣 , and ℓ ′ ↦→s 𝑣
′
denotes ownership of ℓ ′ for the right-hand side program 𝑒′.

Clutch-DP defines two kinds of resources that are novel with respect to standard Iris and which

are inspired by Approxis [21]. The proposition E× (𝜀) asserts ownership of 𝜀 multiplicative privacy
credits and E+(𝛿) similarly asserts ownership of 𝛿 additive privacy credits. These credits are a logical
representation of the privacy budget of DP. Just as reasoning about the physical state of a program

is logically captured by the points-to connective, so is reasoning about the privacy budget (𝜀, 𝛿)
logically expressed via privacy credits.

4

Internalizing privacy. We now have all of the ingredients to define DP internal to Clutch-DP.

Definition 3.1. A RandML function f is internally (𝜀, 𝛿)-dp if the following quadruple holds:

∀db db′ .
{
Adj(db, db′) ∗ E× (𝜀) ∗ E+(𝛿)

}
f db ­ f db′ {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′} (5)

As with the usual (“external”) definition of DP, this notion is parametrized by an internal

adjacency relation Adj(db, db′) on inputs. For instance, we could represent the databases as lists,

where each element represents one entry, and say two databases are adjacent if they differ only in

one entry (when considered as multisets). We abbreviate the Hoare quadruple (5) as (𝜀, 𝛿)-iDP(f)
when the relation is clear from context, and simply 𝜀-iDP(f) for the case where 𝛿 = 0.

The precise meaning of Hoare quadruples and privacy credits can be understood through the

following theorem which connects Clutch-DP to DP in the sense of (3).

Theorem 3.2 (Soundness). If f is internally (𝜀, 𝛿)-dp then f is also externally (𝜀, 𝛿)-dp.

This theorem is a consequence of the adequacy of the semantic model of Clutch-DP (see §5).

3.1 Relational Separation Logic Rules
The standard rules of relational separation logic as used in, e.g., [17] are also available in Clutch-DP.

For instance, the Frame rule enables local reasoning by framing out 𝑅, and the Bind rule allows us

to focus on sub-programs in evaluation contexts. The usual load and store rules for heap locations

come in a left- and a right version, requiring ownership of the corresponding points-to connective.

{𝑃} 𝑒 ­ 𝑒′ {𝑄}
{𝑃 ∗ 𝑅} 𝑒 ­ 𝑒′ {𝑄 ∗ 𝑅}

Frame

{𝑃} 𝑒 ­ 𝑒′ {𝑣 𝑣 ′ . 𝑅} ∀𝑣 𝑣 ′ . {𝑅} 𝐾 [𝑣] ­ 𝐾 ′ [𝑣 ′] {𝑄}
{𝑃} 𝐾 [𝑒] ­ 𝐾 ′ [𝑒′] {𝑄}

Bind

{ℓ ↦→ 𝑤}𝑤 ­ 𝑒′ {𝑄}
{ℓ ↦→ 𝑤} ! ℓ ­ 𝑒′ {𝑄}

Load-l

{ℓ ′ ↦→s 𝑤} 𝑒 ­ 𝑤 {𝑄}
{ℓ ′ ↦→s 𝑤} 𝑒 ­ ! ℓ ′ {𝑄}

Load-r

{ℓ ↦→ 𝑤} () ­ 𝑒′ {𝑄}
{ℓ ↦→ 𝑣} ℓ ← 𝑤 ­ 𝑒′ {𝑄}

Store-l

Fig. 5. Excerpt of the non-probabilistic rules of Clutch-DP.

It is worth noting that the rules in Figure 5 do not mention distributions, despite the fact that the

operational semantics of RandML is probabilistic in general and references can, for instance, store

randomly sampled values. Clutch-DP thus provides a convenient basis for program verification

where reasoning about privacy is integrated as an orthogonal feature while preserving the familiar

rules of relational higher-order separation logic.

4
Contrary to heaps, the privacy budget pertains to a pair of program executions rather than to the left or right program,

and hence there is no left- and right-hand version of credits; instead, they are shared.
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3.2 Privacy Credit Laws
The privacy credit resources logically track two non-negative real numbers 𝜀 and 𝛿 corresponding

to the privacy budget. In light of this intuition, one would expect that they support laws such as

sequential composition (Lemma 2.6). Indeed, we can derive an internal version of this law from the

primitive rules pertaining to privacy credits show in Figure 6 together with the structural rules for

RandML in Figure 5.

E× (𝜀1 + 𝜀2) ⊣⊢ E× (𝜀1) ∗ E× (𝜀2) E+(𝛿1 + 𝛿2) ⊣⊢ E+(𝛿1) ∗ E+(𝛿2) E+(1) ⊢ False

Fig. 6. Privacy credit laws.

Just as in Lemma 2.6, both multiplicative and additive privacy credits can be split into their

summands
5
(and recombined). The last rule states that from 1 additive error credit, we can derive

False and hence anything. This makes sense if we recall that 𝛿 models a bound on an inequality

between probabilities in the definition of DP (Def. 2.3), since any probability is bounded by 1, and

hence any program is trivially (𝜀, 1)-dp.
The fact that the privacy budget is treated like any other separation logic resource and being

able to split the budget enables flexible reasoning about privacy. Privacy credits are animated by

the rules that govern their interaction with the operational semantics of RandML via sampling.

3.3 Rules for Sampling Noise
Privacy credits are consumed by the rules that reason about sampling operations. We introduce a

rule Laplace-shift to reason about a pair of Laplacians, with the same parameter 𝜀 and means

𝑚,𝑚′. By setting 𝑘 = 0 (and thus, |𝑚 −𝑚′ | ≤ 𝑐), the rule lets us spend E× (𝑐 · 𝜀) to ensure that both

Laplacians return the same result. If, instead, 𝑘 > 0 and 𝑐 = 0 (and thus, |𝑚 −𝑚′ | = 𝑘), the rule
lets us conclude, without consuming privacy, that we will get two samples at distance 𝑘 . The rule

combines the two reasoning principles into one:

|𝑘 +𝑚 −𝑚′ | ≤ 𝑐{
E× (𝑐 · 𝜀)

}
Laplace 𝜀 𝑚 ­ Laplace 𝜀 𝑚′ {𝑧 𝑧′ . 𝑧′ = 𝑧 + 𝑘}

Laplace-shift

A consequence of Laplace-shift (when 𝑘 = 0) is that Laplace is internally private, i.e., the Clutch-
DP statement 𝜀-iDP(λ x. Laplace 𝜀 x) is derivable. This internalizes DP of the Laplacian (Thm. 2.4).

Finally, we have the following novel rule for the Laplacian which can be used to recover some

privacy credits. The idea is to partition the results into two groups of outcomes depending on some

threshold𝑇 . If both Laplacians sample a result above𝑇 (in fact, above𝑇 + 1 for the right-hand side)

the privacy credits are consumed. If, on the other hand, both results remain below their respective

thresholds, then the privacy credits can be recovered. This yields a useful reasoning principle for

the Laplacian that is applied, e.g., in the verification of the AboveThreshold mechanism (§4.1.1).

|𝑚 −𝑚′ | ≤ 1 𝑇 ∈ Z{
E× (2𝜀)

}
Laplace 𝜀 𝑚 ­ Laplace 𝜀 𝑚′

{
𝑧 𝑧′ .

(𝑇 ≤ 𝑧 ∧ 𝑇 + 1 ≤ 𝑧′) ∨
(𝑧 < 𝑇 ∧ 𝑧′ < 𝑇 + 1 ∗ E× (2𝜀))

} Laplace-Choice

Intuitively this rule is sound because it partitions the outcomes into disjoint events such that the

total privacy budget for the two is bounded by the initial privacy budget. Despite its conceptual

simplicity, constructing a sound model that validates Laplace-Choice required substantial new

insights in the form of a new composition theorem (see Theorem A.5).

5
NB: Both kinds of privacy credit are split into separating conjunctions by using addition, not multiplication, as the resource

algebra operation. The name “multiplicative privacy credit” for E× (𝜀 ) derives from the multiplicative factor 𝑒𝜀 in Def. 2.3.
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3.4 Internal Composition Laws
Working in a program logic makes it simple to internalize the various composition laws for DP, as

presented in §2. First, we remark that the internal version of post-processing holds. This is stated

in our logic through the following lemma:

Lemma 3.3 (Internal post-processing). Let f be internally (𝜀, 𝛿)-dp and assume g is “safe to
execute” in the sense that ∀𝑤. {True} g𝑤 ­ g𝑤 {𝑣 𝑣 ′ . 𝑣 = 𝑣 ′} holds. Then g ◦ f is internally (𝜀, 𝛿)-dp.

This lemma can be proven entirely within the logic as an immediate consequence of the Bind

rule. We can also recast the notion of sensitivity (Def. 2.7) in Clutch-DP.

Definition 3.4. A RandML function f is internally 𝑐-sensitive (𝑐-sens(f)) if the following holds:
∀𝑥 𝑦 : 𝐴. {True} f 𝑥 ­ f 𝑦 {𝑣 𝑣 ′ . 𝑑𝐵 (𝑣, 𝑣 ′) ≤ 𝑐 · 𝑑𝐴 (𝑥,𝑦)}

As before, the definition is parametrized by two distances at types 𝐴 and 𝐵, which can then

be internalized as distances between values. The internal equivalent of metric composition then

follows.

Lemma 3.5. ∀ f 𝑐 𝜀. 𝑐-sens(f) ∗ 𝜀-iDP(λ x. Laplace (𝜀/𝑐) (f x)) is derivable in Clutch-DP.

4 Reusable Specs for Privacy Mechanisms
Privacy mechanisms are the primitive building blocks of DP. Mechanisms sample the appropriate

noise for a given data processing task. We give specifications for some widely used mechanisms

and demonstrate that clients can be verified based on these abstract specs.

Our first example will be the Above Threshold (AT) mechanism, and we will see how to (1)

prove that it satisfies an abstract specification capturing its privacy, (2) build the Sparse Vector

Technique (SVT) from it, and (3) use AT to calculate the clipping bounds required to privately

compute averages over a dataset. Both (2) and (3) use the same abstract specification of AT.

Besides the case studies presented hereafter, we also verified the privacy of the Report Noisy Max

mechanism, which is of note because—as with AT—its privacy does not follow from composition

laws but requires careful manipulation of the privacy budget and the use of budget- and state-

dependent invariants. Details can be found in §B. We will present the most interesting ideas for

each proof. Full proofs from the rules of Clutch-DP are available in our Rocq formalization.

4.1 Sparse Vector Technique
Suppose we have an incoming sequence of (1-sensitive) queries on a database and a fixed privacy

budget. The Sparse Vector Technique (SVT) allows us to fix a threshold T and release, in a private

manner, whether the result of each query exceeds T or not. The benefit of SVT is that one only has

to spend privacy budget on the “successful” queries which do indeed exceed T and are released; the

results of the queries that do not exceed the threshold can be computed (and discarded) without

incurring a privacy cost. We can thus set in advance a maximum number 𝑁 of successful queries

to be released, and keep answering incoming queries interactively until 𝑁 is reached. The SVT is

usually implemented in terms of the Above Threshold mechanism (AT), which finds a single query
above 𝑇 . SVT then simply runs 𝑁 iterations of AT. The privacy cost of SVT is 𝑁 times the cost of

finding one query above T.

The SVT is of interest for verification because several buggy privacy proofs have been published

(see Lyu et al. [29] for a survey). As the survey explains, the SVT is particularly interesting in the

interactive setting; in the non-interactive setting, one can use the Exponential Mechanism instead

and get more accurate results. We explore two subtleties of SVT: how to perform the privacy

analysis of AT, and how to build an interactive algorithm out of AT. The privacy analysis of AT



12 P. G. Haselwarter, A. Aguirre, S. O. Gregersen, J. Tassarotti, and L. Birkedal

(and SVT) is challenging because it requires fine-grained reasoning about the privacy budget that

cannot be justified by the sequential composition law alone.

4.1.1 Above Threshold. The Above Threshold mechanism can be used to evaluate queries on a

database until one query returns a result that exceeds a specified threshold T. The implementation

of above_threshold in Figure 7 initializes the noisy threshold T̂ and returns a function to run queries

interactively. This function receives a query, computes its result, adds additional noise to it and

checks whether the noisy result exceeds T̂.

let above_threshold ε T = let T̂ = Laplace (ε / 2) T in
let f q db = let x = q db in let y = Laplace (ε / 4) x in T̂ ≤ y
in f

Fig. 7. The Above Threshold mechanism.

Example 4.1. Suppose we want to privately compute the number of even numbers in a list and

check whether it exceeds a threshold of 3. If we run AT with a low privacy budget (e.g., 𝜀 = 10
−3
)

there is very little noise added and we are very likely to observe the true result, i.e.
above_threshold 10

−3
3 (List.count (λ 𝑥 . 𝑥 mod 2 = 0)) [1, 2, 3, 4, 5] → false

above_threshold 10
−3

3 (List.count (λ 𝑥 . 𝑥 mod 2 = 0)) [1, 2, 3, 4, 5, 6] → true

As the value of ε increases, we are more likely to observe true in the first query or false in the

second, i.e., privacy improves.

Our specification (6) captures the idea that above_threshold is interactive: after initialization, the
function f can be used to compare a query to the (noisy) threshold T̂ until a result above T̂ is found,

but queries can be supplied and chosen one by one after observing the result of previous queries.{
E× (ε)

}
above_threshold ε T ­ above_threshold ε Tf f
′ .

∃𝐴𝑈𝑇𝐻. 𝐴𝑈𝑇𝐻 ∗

∀ db db′ q.
{𝐴𝑈𝑇𝐻 ∗ Adj(db, db′) ∗ 1-sens(q)}
f q db ­ f′ q db′

{𝑏 𝑏′ . 𝑏 = 𝑏′ ∗ if not𝑏 then𝐴𝑈𝑇𝐻 }


(6)

Let us unpack the specification piece by piece. After initializing the mechanism with a privacy

budget of ε, we obtain a pair of functions f and f′, where both functions represent the same

computation but with a priori different randomly sampled values of T̂, as well as an abstract

“authorization token” 𝐴𝑈𝑇𝐻 . The Hoare quadruple for f, f′ in the postcondition indicates that so

long as we have the 𝐴𝑈𝑇𝐻 token, running the functions on a 1-sensitive query q and adjacent

datasets (1) produces the same result for both q db and q db′, i.e., the computation is private, and

(2) only consumes the 𝐴𝑈𝑇𝐻 token if q db is above T̂. If the result of the comparison is false,
𝐴𝑈𝑇𝐻 can be recovered in the postcondition and we can continue to privately look for a query

that exceeds T̂. Note that the initial budget E× (ε) is only spent once at initialization, but we can

still privately run as many queries as it takes to get a result above the threshold.

Proving Privacy. The proof of the specification (6) proceeds as follows:

(1) We split E× (ε) into E× (ε/2) ∗ E× (ε/2) and use the first half to pay for the Laplace-shift

rule with parameters𝑚 =𝑚′ = T, 𝑐 = 1, 𝑘 = 1. We thus obtain related results T̂, T̂′ for the
left- and right-hand program such that T̂′ = T̂ + 1. Forcing the two noisy thresholds to be at

distance 1 rather than equal is a standard “trick” in the analysis of Above Threshold.
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(2) We pick𝐴𝑈𝑇𝐻 ≜ E× (ε/2) and use the remaining budget to provide the initial𝐴𝑈𝑇𝐻 token.

(3) We now have to show the specification for

f q db ≜ let x = q db in let y = Laplace (ε / 4) x in T̂ ≤ y

f′ q db′ ≜ let x′ = q db′ in let y′ = Laplace (ε / 4) x′ in T̂′ ≤ y′

(4) By sensitivity of q and adjacency of the databases, x and x′ are at distance at most 1.

(5) By the definition of 𝐴𝑈𝑇𝐻 , the precondition of the refinement confers us a privacy budget

of E× (𝜀/2). We use this budget to apply the Laplace-Choice rule and partition the outcomes

(y, y′) of the remaining Laplace sampling into two mutually exclusive cases:

• T̂ ≤ y and T̂′ ≤ y′. In this case, both of the comparisons return true.
• y < T̂ and y′ < T̂′. In this case, both comparisons return false, the rule does not

consume the privacy budget and we can return 𝐴𝑈𝑇𝐻 .

Either way, f and f′ return the same result 𝑏, and if 𝑏 = false then𝐴𝑈𝑇𝐻 is returned too. □

To see that the specification (6) is indeed useful, we will now use it to verify the privacy of the

interactive sparse vector technique.

4.1.2 An interactive SparseVector Technique. Weprove privacy of the interactive SVT directly

from the abstract specification of the AT mechanism (6). SVT orchestrates repeated invocations of

above_threshold in order to identify the first N of the queries that exceed the threshold T. Unlike
a purely batch-style algorithm, the SVT exposes a streaming interface that allows queries to be

submitted interactively, i.e., depending on the results of earlier queries. This makes the verification

of privacy significantly more challenging, as the set of queries cannot be fixed in advance but

may depend on previously released (noisy) information. In Clutch-DP however, the proof that

sparse_vector is dp is a relatively straightforward consequence of the privacy of above_threshold.
The implementation in §4.1.2 works as follows. It maintains two pieces ofmutable state: a reference

AT to the current Above Threshold instance and a counter that tracks how many additional true
results (i.e., queries that exceed the threshold) may still be released. Each invocation of the returned

function f runs the current above_threshold instance on a new query q and database db, producing
a boolean result b. If b is true and the counter has not yet reached zero, the mechanism consumes ε
privacy credits and reinitializes AT with a fresh Above Threshold instance. Otherwise, the counter

and function reference remain unchanged. The caller may then use the result b to decide which
query to issue next.

let sparse_vector ε T N =

let AT = ref (above_threshold ε T) in
let counter = ref (N − 1) in
let f q db = let b = (!AT) q db in

if ! counter > 0 && b then
( counter← (! counter − 1) ;
AT← above_threshold ε T ) ;

b
in f

let SVT_stream ε T N QS db =

let f = sparse_vector ε T N in
let rec iter i bs =

if i = N then List.reverse bs
else let q = QS bs in

let b = f q db in
iter (if b then (i + 1) else i) (b :: bs)

in iter 0 []

Fig. 8. The Sparse Vector Technique and a streaming client.
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The specification (7) formalizes the intuition that the interactive SVT behaves like a private state

machine that can be queried multiple times while consuming a fixed privacy budget.{
E× (N · ε)

}
sparse_vector ε T N ­ sparse_vector ε T Nf f
′ .

∃ 𝑖𝑆𝑉𝑇 . 𝑖𝑆𝑉𝑇 (N) ∗

∀ db db′ q 𝑛.
{𝑖𝑆𝑉𝑇 (𝑛 + 1) ∗ Adj(db, db′) ∗ 1-sens(q)}
f q db ­ f′ q db′

{𝑏 𝑏′ . 𝑏 = 𝑏′ ∗ 𝑖𝑆𝑉𝑇 (if 𝑏 then 𝑛 else 𝑛 + 1)}


(7)

Initially, the mechanism owns a total privacy resource of E× (N · ε), corresponding to N possible

above-T releases. The abstract token 𝑖𝑆𝑉𝑇 (𝐾) in the postcondition tracks the remaining number 𝐾

of true results we can release. The returned function f satisfies the nested quadruple: if we own at

least 𝑖𝑆𝑉𝑇 (1), we can run a 1-sensitive query on adjacent databases and ensure we get the same

result; if the result is true (i.e., the query exceeds the threshold), we decrease 𝑖𝑆𝑉𝑇 by 1, otherwise

we get back our initial token. This specification thus captures both the privacy accounting and the

interactive behavior of SVT: the mechanism remains private for any adaptively chosen sequence of

1-sensitive queries until the allotted number N of positive releases has been exhausted.

Notably, the proof of this specification treats AT abstractly and relies only on its specification (6),

not its implementation, which gives us a more modular analysis. The proof relies on keeping a

simple invariant over the counter, the AT reference and the remaining privacy budget.

To summarize, this implementation and our verification of it has several noteworthy features:

• the SVT is a client of AT via an abstract specification,

• its interactive interface is specified through nested Hoare quadruples, and

• it requires storing a private higher-order function in a reference.

Next, we demonstrate that our specifications are expressive enough for reuse by different clients.

4.1.3 SVT Client: Streams ofQueries. The standard textbook account of SVT [16] presents

it as an algorithm that takes in a stream of queries QS and produces a list of booleans 𝑏𝑠 where

𝑏𝑖 indicates whether the 𝑖-th query was above the noisy threshold. The stream is represented as

a (possibly stateful) function that produces a new query on each invocation, and interactivity is

modeled by the fact that each time a new query is requested, QS gets access to the booleans 𝑏𝑠

resulting from the preceding queries.

We can directly prove that the implementation SVT_stream (§4.1.2) is private by applying the

generic specification for SVT. A user of SVT_stream only has to satisfy the textbook assumption

that all of the queries are indeed 1-sensitive. The privacy reasoning is encapsulated in (7).

4.1.4 Above Threshold Client: auto_avg. As a last application of the Above Threshold mecha-

nism, we analyze the auto_avg client that privately computes the average of a dataset. This example

is taken from the online textbook [32, Chapter 10].

The fact that both sparse_vector and auto_avg can both be verified against the same abstract

interface for above_threshold is good evidence that our specifications are indeed reusable and can

be used to verify libraries without having to worry about implementation details.

To privately compute the average of a dataset it is not enough to first compute the average and

then add ε Laplacian noise for a fixed ε, as this may leak information about the size of the dataset.

The noise has to be calibrated to the largest element—but that value in itself is private information!

The solution adopted in the implementation of auto_avg in Figure 9 is to “clip” the elements of

the database to lie in a bounded range [0, 𝐵]. If two adjacent databases are clipped to the same

bound, their sum can differ by at most 𝐵. In other words, we can prove that clip_sum 𝐵 is internally
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let auto_avg bnds ε db =

let bound = get_clip_bound bnds ε db in
let sum = clip_sum bound db in
let sumnoisy = Laplace (ε / bound) sum in
let countnoisy = Laplace ε (List.length db) in
sumnoisy / countnoisy

let get_clip_bound bnds ε db =

let qs = List.map (λ b. (b,mk_query b)) bnds in
let (bound, _) = AT_list ε 0 db qs in
bound

let mk_query b db =

(clip_sum b db) − (clip_sum (b + 1) db)
let clip_sum bound db =

List.sum (List.clip bound db)
let AT_list ε T db qs =

let AT = above_threshold ε T in
List.find (λ (bound, q) . AT q db) qs

Fig. 9. Privately computing the average of a list of data.

𝐵-sensitive. We can apply internal metric composition (Lem. 3.5) to show that computing sumnoisy
by adding to the clipped sum Laplacian noise with scale (ε/𝐵) is ε-private. Therefore, auto_avg
achieves (3·ε)-DP, where the budget is divided equally between the call to get_clip_bound and the

two calls to Laplace:{
E× (3 · ε) ∗ Adj(db, db′)

}
auto_avg bnds ε db ­ auto_avg bnds ε db′ {𝑥 𝑥 ′ . 𝑥 = 𝑥 ′}

The utility of auto_avg stems from carefully choosing 𝐵. Given a list of candidate bounds bnds
we can do this privately via the AT mechanism. The function get_clip_bound to finds the first value

b in bnds such that the sum of elements in db stops increasing if the clipping bound is relaxed from
b to b + 1. Testing this for all values in bnds via mk_query is 1-sensitive. Therefore we can directly

apply the specification (6) for above_threshold to derive that get_clip_bound is ε-dp.

4.2 Privacy Filters
A common implementation technique for DP in general-purpose programming languages is to

explicitly track the remaining privacy budget as a program variable. At the beginning of a data

analysis, this variable is initialized to the global privacy budget 𝜀, and it must remain non-negative

throughout the program execution. So long as care is taken to decrement the budget every time

(noisy) data is released, the whole data analysis is 𝜀-private. To ensure that these rules are respected,

the management of the privacy budget is commonly encapsulated in a privacy filter, a higher-order
function that runs a computation only if there is sufficient budget for it. This programming pattern

provides a separation of concerns: if the privacy analysis of the individual computations is correct,

and the filter is correctly implemented, then the entire computation is private. This allows us to

verify the different components (privacy filter and mechanisms) modularly.

let privacy_filter εbudget =

let εrem = ref εbudget in
let try_run εcost f =

if ! εrem < εcost then
None

else
εrem ← ! εrem − εcost ;
Some (f ())

in try_run

let adaptive_count εcoarse εprecise T εbudget predicates db =

let try_run = privacy_filter εbudget in
List.map (λ pred. let nexact = List.count pred db in

let g _ = Laplace εprecise nexact in
let f _ = let ncoarse = Laplace εcoarse nexact in

let nprecise = if T < ncoarse
then try_run εprecise g
else None in
(ncoarse, nprecise)

in try_run εcoarse f)
predicates

Fig. 10. Implementations of a Privacy Filter and Adaptive Count.
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The implementation privacy_filter in Figure 10 works as follows. Upon initialization it allocates

a reference that tracks the remaining privacy budget and returns a closure try_run that can be used

to run private computations in an interactive manner. If a client tries to run a computation with

cost exceeding the remaining budget, try_run does not run the computation, otherwise it decreases

the budget by the cost, runs the computation, and returns the result.

For the sake of simplicity we present a privacy filter that only tracks the 𝜀-budget, but the method

directly generalizes to (𝜀, 𝛿)-privacy filters.

4.2.1 Proving Privacy of Privacy Filters. The high-level intuition for the privacy filter is that it

should never exceed the budget that was initially set up so long as any client that calls try_run εcost f
ensures that f is indeed εcost-dp. This intuition is captured by the following specification.

∀ εbudget .

{
E×

(
εbudget

)}
privacy_filter εbudget ­ privacy_filter εbudget
{try_run try_run′ . ∃ 𝑖𝑃𝐹 . 𝑖𝑃𝐹 ∗ try_run-spec}

(8)

where try_run-spec is defined as

∀ εcost f f′ 𝐼𝑛𝑣f .

{
𝑖𝑃𝐹 ∗ 𝐼𝑛𝑣f
∗
{
E× (εcost) ∗ 𝑖𝑃𝐹 ∗ 𝐼𝑛𝑣f

}
f () ­ f′ () {𝑣 𝑣 ′ . 𝑣 = 𝑣 ′ ∗ 𝑖𝑃𝐹 ∗ 𝐼𝑛𝑣f}

}
try_run εcost f ­ try_run′ εcost f′

{𝑏 𝑏′ . 𝑏 = 𝑏′ ∗ 𝑖𝑃𝐹 ∗ 𝐼𝑛𝑣f}
(9)

The existentially quantified 𝑖𝑃𝐹 token in the postcondition of (8) represents a client’s ability to exe-

cute computations privately via try_run. The specification (9) defines the behavior of try_run εcost f.
Assuming that for a privacy cost of εcost the functions f and f′ produce equal results and maintain an

invariant 𝐼𝑛𝑣f , calling them through try_run (and try_run′ respectively) satisfies the same invariant

regardless of whether there actually is enough budget left to execute f. Since f may itself contain

calls to try_run, the specification for (f, f′) has access to the 𝑖𝑃𝐹 token. We give a simple application

of this expressivity in the form of nested calls to the privacy filter in §4.2.2.

The proof of the specification in Clutch-DP is straightforward. We define the token 𝑖𝑃𝐹 as

∃𝜀. E× (𝜀) ∗ εrem ↦→ 𝜀 ∗ ε′rem ↦→s 𝜀 .

The link between the logical resource representing ownership of the error budget and the program

state tracking the remaining budget allows us to conclude that the call to Some (f ()) in the definition
of try_run is only executed when sufficient privacy budget remains to satisfy the precondition of

(f, f′) in (9), and hence the invariant 𝐼𝑛𝑣f is satisfied. In case try_run decides that the budget is

insufficient for f, the invariant is trivially preserved.

The power of this specification for privacy_filter lies in the fact that a client does not have to

perform any privacy accounting or reasoning whatsoever for try_run εcost f! We can conveniently

combine library functions to build a private f and run it without having to worry whether we still

have enough budget: the filter ensures that the initial budget is never exceeded.

4.2.2 Client: Adaptive Counting. Another advantage of implementing DP through privacy

filters is that it allows the data analyst to decide dynamically where the privacy budget should be

spent, i.e., the way the budget is spent can adapt to the results of prior analyses. This is especially

useful in exploratory data analysis when it is unclear, a priori, what values the dataset ranges over.

The example adaptive_count in Figure 10 employs a form of adaptivity to privately count the

number of elements of db that satisfy each of the tests in the list of predicates. First, a cheaper but
less precise count is performed, consuming εcoarse privacy credits. Only if this yields a promising

result that exceeds a threshold T, a more precise analysis is performed for an additional larger
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budget of εprecise. The result of adaptive_count is thus a numeric estimate for each predicate, with

a more precise value for a few “important” candidates.

A conservative privacy analysis would have to assume a worst-case cost of length(predicates) ·
(εcoarse + εprecise) even if many of the coarse counts may in practice not exceed the threshold. By

employing a privacy filter, we can instead fix a budget εbudget that we want to allocate to this

analysis task and try to run the analysis so long as the filter has enough budget left. If only a few of

the data entries exceed T, this allows to count many more predicates than the conservative analysis

without a privacy filter.

In Clutch-DP, we can prove that adaptive_count is εbudget-dp from the specification (8) because f
and g meet the precondition of try_run, as they consume a budget of εcoarse and εprecise respectively.

4.3 Caching Techniques for DP
Interactive analysis with data-dependent queries is common in real-world workloads for DP. This

poses a challenge for DP frameworks because it makes it impossible to statically avoid repeated

evaluation of certain queries, say, by refactoring code that requires the same result, and hence

repeated queries inflate the privacy cost unnecessarily. This problem can be solved with a query

cache that memoizes the results of a query on first execution and reuses this result upon repetition.

One would hope that reusing a noisy result in a repeated query should be “for free” and consume no

privacy budget. However, the privacy analysis of such a memoization method is subtle, because the

privacy cost of a query depends on the history of queries, which is highly non-local information.

let mk_query_cache add_noise db =

let cache =Map.init () in
let run_cache q =

matchMap.get cache q with
| Some x ⇒ x
| None ⇒ let x = add_noise q db in

Map.set cache q x ;
x

in run_cache

let map_cache add_noise qs db =

let run_cache =
mk_query_cache add_noise db in

List.map run_cache qs

Fig. 11. Implementations of a cache and a client.
In this section, we reason about the privacy of the caching method introduced in Figure 3, which

we implement in RandML through the algorithm shown in Figure 11. Our formalization crucially

relies on our logic being able to support higher-order functions, local state, and a resource-based

representation of the privacy budget.

4.3.1 Cache spec: repeated queries are free. Upon initialization, mk_query_cache allocates a
mutable map cache and returns a closure run_cache that stores and looks up noisy query results

in cache. This is reflected in (10) as the existentially quantified iC(𝑀𝑐𝑎𝑐ℎ𝑒 ) resource. Initially, the
map𝑀𝑐𝑎𝑐ℎ𝑒 is empty, but it can be updated via run_cache as we will see next.

{Adj(db, db′)}
mk_query_cache add_noise db ­ mk_query_cache add_noise db′

{run_cache run_cache′ . ∃iC. iC(Map.empty) ∗ spec-cached ∗ spec-fresh}
(10)

where spec-fresh is defined as

∀𝑀𝑐𝑎𝑐ℎ𝑒 q .

{
q ∉ dom(𝑀𝑐𝑎𝑐ℎ𝑒 ) ∗ E× (𝜀) ∗ E+(𝛿) ∗ (𝜀, 𝛿)-iDP(add_noise q) ∗ iC(𝑀𝑐𝑎𝑐ℎ𝑒 )

}
run_cache q ­ run_cache′ q
{𝑣 𝑣 ′ . 𝑣 = 𝑣 ′ ∗ iC(𝑀𝑐𝑎𝑐ℎ𝑒 [q ↦→ 𝑣])}

(11)
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and spec-cached is defined as

∀𝑀𝑐𝑎𝑐ℎ𝑒 q .

{q ∈ dom(𝑀𝑐𝑎𝑐ℎ𝑒 ) ∗ iC(𝑀𝑐𝑎𝑐ℎ𝑒 )}
run_cache q ­ run_cache′ q
{𝑣 𝑣 ′ . 𝑣 = 𝑣 ′ ∗ iC(𝑀𝑐𝑎𝑐ℎ𝑒 ) ∗ 𝑀𝑐𝑎𝑐ℎ𝑒 [q] = 𝑣}

(12)

The specification (11) describes the behavior of (run_cache q) on a query that has not been memo-

ized yet. It requires that add_noise should indeed run q under (𝜀, 𝛿)-iDP and assumes ownership of

enough privacy credits to pay for this execution. Furthermore, it requires ownership of iC(𝑀𝑐𝑎𝑐ℎ𝑒 )
for the current internal state of the cache. In the postcondition, we recover iC where 𝑀𝑐𝑎𝑐ℎ𝑒 is

updated with the result of the noisy query.

The intuition that repeated queries should be free is formalized in (12): if q is in the cache then

no privacy credits are consumed for executing it under run_cache.

4.3.2 A cache client. A simple application ismap_cache (Figure 11), which employs the cache to

run add_noise on a list of queries qs. We can prove that the privacy cost of map_cache is (𝑘𝜀, 𝑘𝛿)
where (𝜀, 𝛿) is the privacy cost of the add_noise mechanism and 𝑘 = |{q ∈ qs}| is the number of

unique queries in qs. The proof of (13) follows directly from the abstract specification (10).

(∀q ∈ qs. (𝜀, 𝛿)-iDP(add_noise q)) ∗ (𝑘𝜀, 𝑘𝛿)-iDP(map_cache add_noise qs) (13)

Without caching, the privacy cost would have to be multiplied by List.length(qs) instead of 𝑘 .

5 Soundness: A Model of Clutch-DP
In this section we give an overview of the model behind Clutch-DP and its adequacy theorem. A

detailed account can be found in §A.

Our program logic is based around the notion of (𝜀, 𝛿)-approximate coupling [7, 37]:

Definition 5.1. Let 𝐴, 𝐵 be countable types, and Φ ⊆ 𝐴 × 𝐵 a relation. Given two real-valued
parameters 0 ≤ 𝜀, 𝛿 , we say that there is an (𝜀, 𝛿)-approximate Φ−coupling between distributions
𝜇1 : D(𝐴), 𝜇2 : D(𝐵) if, for any real-valued random variables 𝑓 : 𝐴→ [0, 1], 𝑔 : 𝐵 → [0, 1] such that
∀(𝑎, 𝑏) ∈ Φ, 𝑓 (𝑎) ≤ 𝑔(𝑏), the following holds : E𝜇1 [ 𝑓 ] ≤ exp(𝜀) · E𝜇2 [𝑔 ] + 𝛿 . We denote the existence
of such a coupling by 𝜇1 Φ(𝜀,𝛿 ) 𝜇2.

The model is similar in spirit to that of Approxis [21], which can be seen as based on a notion

of (0, 𝛿)-approximate coupling. There is a tight connection between couplings and DP: a function

𝑓 : DB→ D(𝑋 ) is (𝜀, 𝛿)-dp iff for any adjacent inputs 𝑏,𝑏′ : DB, we have 𝑓 𝑏 (=) (𝜀,𝛿 ) 𝑓 𝑏′.
With this definition in mind, we can now state the adequacy theorem of Clutch-DP.

Theorem 5.2. Let 𝑓 , 𝑓 ′ be two RandML functions and Φ,Ψ :Val ×Val→ Prop. If{
Φ(𝑤,𝑤 ′) ∗ E+(𝛿) ∗ E× (𝜀)

}
𝑓 𝑤 ­ 𝑓 ′ 𝑤 ′ {Ψ}

holds in Clutch-DP then, for any initial states 𝜎, 𝜎 ′, we have exec(𝑓 𝑤, 𝜎) Ψ (𝜀,𝛿 ) exec(𝑓 ′ 𝑤 ′, 𝜎 ′).

By instantiating Φ with adjacency and Ψ with equality, we recover Theorem 3.2 as a corollary.

Internally, the Hoare quadruples are defined in terms of a primitive, unary notion of weakest

precondition (WP), where the right-hand side program is represented as a separation logic re-

source [17, 20, 21]. Validity of the WP is defined by guarded induction on the program execution,

establishing an approximate coupling at each step, and finally composing all the couplings into a

coupling for the full execution. Each program logic rule is then proven sound w.r.t. the definition of

the WP. In particular, all standard separation logic rules for the deterministic fragment of RandML

can be re-established. We refer the reader to the supplementary material for more details.
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Fuzz [35] lin. types #  𝜀 # # # #
Fuzz𝜖𝛿 [13] lin. typ., path adj. #  (𝜀, 𝛿 ) # # # #
DFuzz [18] lin. dep. types #  𝜀 # # # #
AFuzz [41] dyn. typ. + priv. filter #  (𝜀, 𝛿 ) # #  #
Fuzzi [43] Fuzz-like + apRHL # # (𝜀, 𝛿 ) #  # #
Duet [33] sens. + priv. types #  (𝜀, 𝛿 ) , RDP, (z/t)CDP # # # #
Jazz [40] ctxt’l sens. + priv. typ. #  (𝜀, 𝛿 ) , RDP, zCDP # # # #
DPella [27] eDSL dep. types #  𝜀 # # # #
Solo [1] eDSL dep. types #  (𝜀, 𝛿 ) , RDP # # # #
Spar [28] eDSL dep. types #  𝜀 # # # #
HOARe2[8] rel. refinement types #  (𝜀, 𝛿 ) # # # #
LightDP [42] types + annot. G# △ # 𝜀 #  # #
SampCert [14] semantic #  (𝜀, 𝛿 ) , zCDP   # #
DP/Isabelle [39] semantic # # (𝜀, 𝛿 )   # #
apRHL+ [6, 7, 10] rel. prob. Hoare logic G# △ # (𝜀, 𝛿 ) #  # G#
HO-RPL [2] rel. prob. Hoare logic G# △  (𝜀, 𝛿 ) # # # G#
Clutch-DP rel. prob. sep. logic  ■  (𝜀, 𝛿 )     

Fig. 12. Comparison of DP systems. “Beyond comp.” = support for mechanisms whose DP goes beyond
composition laws (e.g., SVT, RNM).

6 Related Work
Types for DP. A wide range of type systems ensuring DP have been developed. Fuzz [35] and

its variants track function sensitivity via linear types and rely on metric composition to statically

ensure pure DP for a probabilistic λ-calculus. DFuzz [18] integrated linear and dependent types to

improve sensitivity analysis. Fuzz
𝜖𝛿

[13] extends Fuzz with support for (𝜀, 𝛿)-DP. The two-level
type system of Adaptive Fuzz [41] enhances static typing by integrating a trusted privacy filter into

the language runtime. The system allows programming with adaptive composition by dynamically

type-checking programs during execution and composing them according to the privacy filter. In

Clutch-DP, privacy filters are just regular programs that can be verified in their own right.

Duet [33] is a linear type system supporting various notions of DP by a separation of the language

into a sensitivity and a privacy layer which interact through bespoke composition laws that restrict

rescaling, which limits the kinds of higher-order functions that can be type-checked. Jazz [40]

lifts some of these restrictions by introducing latent contextual effect types. HOARe
2
[8] encodes

sensitivity and privacy information in relational refinement types for a pure calculus.

The DPella system [27], Solo [1], and Spar [28] leverage extensions to Haskell’s type system to

encode sensitivity (or distance) information via dependent types instead of linear types.

None of these systems support mutable state, or the verification of programs whose privacy

requires advanced budget management instead of following directly from composition laws.

LightDP [42] employs a dependent relational type system to bound distances in program variables.

With SMT-backed type inference, LightDP can verify DP for some mechanisms beyond composition

laws (e.g., non-interactive SVT), but the method does not extend to advanced language features or

flexible privacy budget analysis as used, e.g., in Report Noisy Max.

Logics for DP. The apRHL(+) program logics [6, 7, 10] can prove (𝜀, 𝛿)-DP for programs written

in a first-order while-language. Reasoning about basic mechanisms is well supported in apRHL, and

it has been applied to advanced mechanisms such as SVT. Verification of interactive DP is supported
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through a specialized rule for adversaries that can interact with mechanisms through fixed patterns.

In apRHL, adversaries are programs subject to a number of side-conditions; in contrast, our model

of interactive computations via higher-order functions does not come with syntactic restrictions

and can be composed modularly. For instance, we can recover the apRHL model of SVT used by

Barthe et al. [7, Fig. 1] through our streaming SVT (§4.1.3) by instantiating the stream of queries

QS with the adversary A of loc. cit. The privacy budget in apRHL is handled via a grading on

judgments which offers less flexibility compared to Clutch-DP’s privacy credits.

A variant of the EasyCrypt prover supports apRHL but the implementation of the apRHL rules

are part of the trusted code base, whereas the rules of Clutch-DP are proven sound in a proof

assistant. During the development of our case studies we found a bug in the Laplace sampling

rule of EasyCrypt
6
which has accidentally been exploited in a user-contributed privacy proof of

Report Noisy Max. Our foundational approach would have prevented us from introducing such an

erroneous rule. Proof search for coupling-based proofs of DP for first-order programs was studied

in [4]. Their definition of choice couplings inspired our Laplace-Choice rule.

Fuzzi [43] integrates an apRHL-style logic with a Fuzz-inspired sensitivity- and privacy-logic;

working at the intersection of the languages of the two systems, it does not support mutable state

or higher-order functions.

The HO-RPL logic extends the ideas from apRHL to support higher-order functions and continu-

ous distributions by giving a denotational semantics of programs in Quasi-Borel Spaces, but it is

not known how to extend this approach to other language features that our challenge problems

require such as dynamic allocation or higher-order store.

The Isabelle/HOL formalization of DP [39] develops the mathematical theory of DP in the

continuous setting. Working directly in the semantics, they prove privacy of Report Noisy Max,

stating however that “the formal proof is quite long”. Our proof of RNM is about six times shorter,

demonstrating the benefits of working in a program logic.

The SampCert project [14] formalized DP in the Lean prover by interpreting a shallow embedding

of a while-like language in the same kind of denotational semantics that apRHL is based on. Rather

than assuming that the language has a primitive that samples from the Laplacian, SampCert proves

that an efficient implementation of a sampler realizes the Laplace distribution. Their approach is

particularly well-suited to carrying out the low-level probabilistic reasoning and focuses less on

building modular systems. SampCert formalizes non-interactive variants of AT and SVT.

Separation logic. Several probabilistic separation logics exist, but only Clutch-DP supports

reasoning about DP. The Approxis [21] relational separation logic supports reasoning about approx-

imate program equivalence. Their notion of 𝛼-approximate equivalence amounts to (0, 𝛼)-dp in

our setting, i.e., our additive privacy credits correspond to their “error credits”. Approxis can prove

cryptographic security or correctness of samplers but cannot express DP. Bluebell [5] encodes

coupling-based relational reasoning via a conditioning modality, but only supports exact program

equivalences for terminating first-order programs.

7 Conclusion and Future Work
We have developed Clutch-DP, a probabilistic higher-order separation logic for DP. To demonstrate

how Clutch-DP enables modular verification of DP libraries, we addressed three representative

challenges and verified a wide range of case studies involving interactive mechanisms, privacy

filters, and memoization. Clutch-DP is proven sound as a library for Iris in the Rocq Prover.

In future work, we would like to extend Clutch-DP to model concurrency to reason about local DP

in a distributed setting. We would also like to integrate verified sampling mechanisms as developed

6
We have disclosed the bug to the EasyCrypt team.
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by, e.g., de Medeiros et al. [14], to provide end-to-end DP guarantees by adapting the techniques of

Aguirre et al. [3] to verify rejection samplers to the relational setting. Finally, it would be interesting

to integrate other divergences [38] with relational separation logics to model, e.g., Rényi-DP.
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A Semantic Model
In this section we dive into the model behind Clutch-DP and show how our adequacy theorem is

proven. We begin by recalling some notions of probability theory.

A.1 Probability Theory and Probabilistic Couplings
Given a countable set 𝐴, a probability (sub-)distribution 𝜇 over 𝐴 is a function 𝜇 : 𝐴→ [0, 1] such
that

∑
𝑎 𝜇 (𝑎) ≤ 1. We use the notationD(𝐴) to denote the set of distributions over 𝐴. Distributions

have a well-known monadic structure, see e.g. [21]. We use ret𝑎 and 𝜇 ≫= 𝑓 to denote the return
and bind operations. Given a random variable 𝑓 : 𝐴 → [0, 1], its expected value is given by

E𝜇 [ 𝑓 ] ≜
∑

𝑎 𝜇 (𝑎) 𝑓 (𝑎).
We recall the notion of (𝜀, 𝛿)-approximate coupling, due to [7, 37]:

Definition A.1. Let 𝐴, 𝐵 be countable types, and Φ ⊆ 𝐴 × 𝐵 a relation. Given two real-valued
parameters 0 ≤ 𝜀, 𝛿 , we say that there is an (𝜀, 𝛿)-approximate Φ−coupling between distributions
𝜇1 : D(𝐴), 𝜇2 : D(𝐵) if, for any real-valued random variables 𝑓 : 𝐴→ [0, 1], 𝑔 : 𝐵 → [0, 1] such that
∀(𝑎, 𝑏) ∈ Φ, 𝑓 𝑎 ≤ 𝑔𝑏, the following holds : E𝜇1 [ 𝑓 ] ≤ exp(𝜀) · E𝜇2 [𝑔 ] + 𝛿 . We denote the existence of
such a coupling by 𝜇1 Φ(𝜀,𝛿 ) 𝜇2.

The reason we are interested in approximate couplings is that there is a tight connection between

them and DP. Indeed, when instantiating Φ to be the equality relation we have the following result:

Theorem A.2. Let 𝑓 : DB→ D(𝑋 ) be a function over databases. Then, 𝑓 is (𝜀, 𝛿)-dp iff for any
inputs 𝑏,𝑏′ : DB such that 𝑑DB (𝑏,𝑏) ≤′ 1, we have 𝑓 𝑏 (=) (𝜀,𝛿 ) 𝑓 𝑏′.

Approximate couplings are the key component of our relational program logic. One can think of

𝜇1, 𝜇2 as two randomized computations, Φ as a relational postcondition we wish to establish and

(𝜀, 𝛿) as a privacy budget that we can spend in order to prove the postcondition. We will see later

in the section how to interpret 𝜀 and 𝛿 as separation logic resources, but for now notice that they

have an affine flavor to them, since they satisfy the following monotonicity lemma:

Lemma A.3. Let 𝜇1 : D(𝐴), 𝜇2 : D(𝐵), Φ ⊆ 𝐴 × 𝐵. Assume that 𝜇1 Φ(𝜀,𝛿 ) 𝜇2. Then, for all 𝜀′, 𝛿 ′,Φ′

such that 𝜀 ≤ 𝜀′, 𝛿 ≤ 𝛿 ′, Φ ⊆ Φ′, we also have 𝜇1 Φ′ (𝜀
′,𝛿 ′ ) 𝜇2.

In order to build a logic around couplings, we need them to be able to compose them along the

operations of the underlying distribution monad. The following results are well-known:

Theorem A.4. The distribution monad operations lift to couplings, in the sense that:
• Let 𝑎 : 𝐴,𝑏 : 𝐵 and Φ ⊆ 𝐴 × 𝐵 such that (𝑎, 𝑏) ∈ Φ. Then ret𝑎 Φ(𝜀,𝛿 ) ret𝑏.
• Let 𝜇1 : D(𝐴), 𝜇2 : D(𝐵), 𝑓 : 𝐴 → D(𝐴′), 𝑔 : 𝐵 → D(𝐵′) and Φ ⊆ 𝐴 × 𝐵,Ψ ⊆ 𝐴′ × 𝐵′ such
that 𝜇1 Φ(𝜀,𝛿 ) 𝜇2 and, for all (𝑎, 𝑏) ∈ Φ, 𝑓 𝑎 Ψ (𝜀

′,𝛿 ′ ) 𝑔𝑏. Then, (𝜇1 ≫= 𝑓 ) Ψ (𝜀+𝜀
′,𝛿+𝛿 ′ ) (𝜇2 ≫=𝑔).

In order to support a more flexible form of composition, such as in our Above Threshold example

(§4.1.1), we introduce a more general version of the composition lemma above, where the choice of

coupling in the continuation can depend on the result of the first step. This is heavily inspired by

choice couplings [7], but it really shines in our setting, since we have a resourceful treatment of

the privacy budget.

Theorem A.5. Let 𝜇1 : D(𝐴), 𝜇2 : D(𝐵), 𝑓 : 𝐴 → D(𝐴′), 𝑔 : 𝐵 → D(𝐵′). Assume we have a
predicate Ξ ⊆ 𝐴, and Φ1,Φ2 ⊆ 𝐴 × 𝐵,Ψ ⊆ 𝐴′ × 𝐵′, with Φ1,Φ2 disjoint in the sense that, ∀𝑎, 𝑎′, 𝑏.𝑎 ∈
Ξ ∧ 𝑎′ ∉ Ξ→ ((𝑎, 𝑏) ∉ Φ1 ∨ (𝑎′, 𝑏) ∉ Φ2). Assume further that:
• 𝜇1 Φ1

(𝜀1,𝛿1 ) 𝜇2
• 𝜇1 Φ2

(𝜀2,𝛿2 ) 𝜇2
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• For all 𝑎, 𝑏 such that 𝑎 ∈ Ξ and (𝑎,𝑏) ∈ Φ1, 𝑓 𝑎 Ψ (𝜀
′
1
,𝛿 ′

1
) 𝑔𝑏.

• For all 𝑎, 𝑏 such that 𝑎 ∉ Ξ and (𝑎,𝑏) ∈ Φ2, 𝑓 𝑎 Ψ (𝜀
′
2
,𝛿 ′

2
) 𝑔𝑏.

Then, (𝜇1 ≫= 𝑓 ) Ψ (𝜀,𝛿 ) (𝜇2 ≫=𝑔), where 𝜀 ≜ max(𝜀1 + 𝜀′1, 𝜀2 + 𝜀′2) and 𝛿 ≜ 𝛿1 + 𝛿2 +max(𝛿 ′
1
, 𝛿 ′

2
)

The idea behind the statement above is that it allows us to use two different couplings for the

first step: one over Φ1 and another over Φ2. Then get a sample 𝑎 from 𝜇1, and we choose which of

the couplings to use depending on whether 𝑎 lands in Ξ, and we continue the rest of the execution.

In particular, this allows us to optimize the use of the 𝜀 component of the privacy budget, since we

can set the amount to use in each of the variants and only spend what we need. In the case of the 𝛿

component, we can also set the optimal amount for the continuation, but not for the first step, both

𝛿1 and 𝛿2 need to be spent no matter the result.

A.2 HoareQuadruples and the Weakest Precondition
Hoare Quadruples are not a primitive notion in Clutch-DP. Instead, they are defined in terms of a

weakest precondition predicate (WP). This is a unary predicate about the left-hand side program.

The right-hand program 𝑒𝑅 is tracked by a resource spec(𝑒𝑅).

{𝑃} 𝑒 ­ 𝑒′ {𝑣 𝑣 ′ . 𝑄} ≜ �(𝑃 ∗ ∃𝐾. spec(𝐾 [𝑒′]) ∗ wp 𝑒 {𝑣 .∃𝑣 ′ . spec(𝐾 [𝑣 ′]) ∗ 𝑄 (𝑣, 𝑣 ′)})

to state that 𝑒 refines 𝑒′ and that if 𝑒 terminates with 𝑣 then 𝑒′ terminates with 𝑣 ′ and the postcon-

dition 𝑃 is satisfied.

The WP, whose definition is shown below, couples the execution of the implementation program

together with the execution of the specification program and ensures that the postcondition holds

at the end. The construction is similar to the one presented in Approxis [21], but adapted to our

more general notion of coupling. Crucially, we also employ an updated program coupling modality

to support choice coupling composition at the level of program steps. Notice that this definition

tracks the two components of the error, both 𝜀 and 𝛿 . As usual, the weakest precondition is a

predicate defined as a guarded fixpoint, whose existence is ensured by the presence of the later

modality (⊲) in front of the recursive occurrence of the weakest precondition:

wpE 𝑒1 {Φ} ≜ ∀𝜎1, 𝜌
′
1
, 𝜀1, 𝛿1 . 𝑆 (𝜎1, 𝜌 ′1, 𝜀1, 𝛿1) ∗

|⇛E ∅ scpl 𝜎1 ­(𝜀1,𝛿1 ) 𝜌
′
1
{𝜎2, 𝜌 ′2, 𝜀2, 𝛿2.(

𝑒1 ∈Val ∗ |⇛∅ E 𝑆 (𝜎2, 𝜌 ′2, 𝜀2, 𝛿2) ∗ Φ(𝑒1)
)
∨(

𝑒1 ∉Val ∗ pcpl (𝑒1, 𝜎2) ­(𝜀2,𝛿2 ) 𝜌 ′2 {𝑒2, 𝜎3, 𝜌 ′3, 𝜀3, 𝛿3.
⊲ scpl 𝜎3 ­(𝜀3,𝛿3 ) 𝜌

′
3
{𝜎4, 𝜌 ′4, 𝜀4, 𝛿4 . |⇛∅ E 𝑆 (𝜎4, 𝜌 ′4, 𝜀4, 𝛿4) ∗ wpE 𝑒2 {Φ}}}

)
}

The weakest precondition requires us to own the state interpretation 𝑆 (𝜎1, 𝜌 ′1, 𝜀1, 𝛿1), which is

a predicate that maps the different resources in Clutch-DP (the physical state of the implemen-

tation program, the configuration of the specification program, and the privacy budget) to their

corresponding resource algebras. We then have to prove two different cases, depending on whether

the current program 𝑒 is or is not a value. In the former case, we can just give back the state

interpretation and prove Φ. Otherwise, we have to prove a property about the distribution that

results after taking one program step. This is phrased in terms of the composition of two modalities,

the specification coupling modality and the program coupling modality.
The specification coupling modality, initially introduced in Approxis, accounts for logical updates

to the current state of the execution. In particular, it allows for the specification program to take
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physical steps. It is defined as and inductive predicate given by the following rules:

spec-coupl-ret

Φ(𝜎, 𝜌 ′, 𝜀, 𝛿)
scpl 𝜎 ­(𝜀,𝛿 ) 𝜌

′ {Φ}

spec-coupl-bind

𝜇1 𝑅
(𝜀1,𝛿1 ) (𝜇′

1
≫= 𝜆 𝜎 ′

2
. step𝑛 (𝑒′1, 𝜎 ′2)) 𝜀1 + 𝜀2 ≤ 𝜀 𝛿1 + 𝛿2 ≤ 𝛿

erasable(𝜇1, 𝜎1) erasable(𝜇′
1
, 𝜎 ′

1
) ∀(𝜎2, 𝜌 ′2) ∈ 𝑅. |⇛∅ scpl 𝜎2 ­(𝜀2,𝛿2 ) 𝜌 ′2 {Φ}

scpl 𝜎1 ­(𝜀,𝛿 ) (𝑒′1, 𝜎 ′1) {Φ}

For the purpose of this work, the notion of erasability can be ignored, this is used to support

presampling tapes [20]. By the spec-coupl-ret rule, if the current implementation and specification

programs, and error budget satisfy Φ, we can immediately conclude scpl 𝜎 ­(𝜀,𝛿 ) 𝜌 ′ {Φ}. The spec-
coupl-bind considers the recursive case.We can split our current credit budget 𝜀, 𝛿 into 𝜀1+𝜀2, 𝛿1+𝛿2
and use 𝜀1, 𝛿1 to take a number 𝑛 of steps on the specification program under an approximate

coupling that satisfies an intermediate relation 𝑅. Then from (𝜎2, 𝜌 ′2) ∈ 𝑅, we continue to recursively
stablish scpl 𝜎2 ­(𝜀2,𝛿2 ) 𝜌

′
2
{Φ}, with our remaining credit budget 𝜀2, 𝛿2.

The program coupling modality couples exactly one physical step of the left-hand side program

with an arbitrary number of physical steps 𝑛 of right-hand side program. In addition, the right-

hand side program is also allowed to execute an erasable update before its physical steps. Choice

couplings are baked into the definition of the program coupling modality, thus the intermediate pair

of states that the program reach can satisfy one of either 𝑅1 or 𝑅2 before executing the continuation.

The amount of error credits that is available for the continuation may also depend on this choice.

prog-coupl-bind

step(𝑒1, 𝜎1) 𝑅1 (𝜀1,𝛿1 ) (𝜇′1 ≫= 𝜆 𝜎 ′2. step𝑛 (𝑒′1, 𝜎 ′2)) step(𝑒1, 𝜎1) 𝑅2 (𝜀2,𝛿2 ) (𝜇′1 ≫= 𝜆 𝜎 ′2. step𝑛 (𝑒′1, 𝜎 ′2))
red(𝑒1, 𝜎1) 𝜀1 + 𝜀2 ≤ 𝜀 𝜀′

1
+ 𝜀′

2
≤ 𝜀 𝛿1 + 𝛿2 +max(𝛿 ′

1
+ 𝛿 ′

2
) ≤ 𝛿 erasable(𝜇′

1
, 𝜎 ′

1
)

∀((𝑒2, 𝜎2), (𝑒′2, 𝜎 ′2)). ((𝑃 (𝑒2, 𝜎2) ∧ 𝑅1 ((𝑒2, 𝜎2), (𝑒′2, 𝜎 ′2))) |⇛∅Φ(𝑒2, 𝜎2, 𝑒′2, 𝜎 ′2, 𝜀′1, 𝛿 ′1))∗
((¬𝑃 (𝑒2, 𝜎2) ∧ 𝑅2 ((𝑒2, 𝜎2), (𝑒′2, 𝜎 ′2))) |⇛∅Φ(𝑒2, 𝜎2, 𝑒′2, 𝜎 ′2, 𝜀′2, 𝛿 ′2))

pcpl (𝑒1, 𝜎1) ­(𝜀,𝛿 ) (𝑒′1, 𝜎 ′1) {Φ}

A.3 An Adequacy Theorem
With these definitions in hand, we can state the adequacy theorem of Clutch-DP, now in full

generality:

Theorem A.6. Let 𝑒, 𝑒′ be two RandML functions and Ψ :Val×Val→ Prop a proposition over (final)
values. If spec(𝑒′) ∗ E× (𝜀) ∗ E+(𝛿) ∗ wp 𝑒 {𝑣, 𝑣 ′ .spec(𝑣 ′) ∗ Ψ} holds in Clutch-DP, then, for any
initial states 𝜎, 𝜎 ′, we have exec(𝑒, 𝜎) Ψ (𝜀,𝛿 ) exec(𝑒′, 𝜎 ′).

The proof is done by induction on the execution of the left-hand side program, by proving the

lemma below, and finally taking a limit:

Lemma A.7. Let 𝑒, 𝑒′ be two RandML functions and Ψ :Val ×Val→ Prop a proposition over (final)
values. If spec(𝑒′) ∗ E× (𝜀) ∗ E+(𝛿) ∗ wp 𝑒 {𝑣, 𝑣 ′ .spec(𝑒′) ∗ Ψ} holds in Clutch-DP, then, for any
𝑛 ∈ N and any initial states 𝜎, 𝜎 ′, we have exec𝑛 (𝑒, 𝜎) Ψ (𝜀,𝛿 ) exec(𝑒′, 𝜎 ′).

The key part of the proof happens when the program on the left is not a value, and has to take a

step. This requires two applications of state-coupl-bind and one application of prog-coupl-bind
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to establish the specification coupling in the non-value case of the WP. In particular, prog-coupl-

bind allows us to advance the program on the left exactly one step, which lets us use our inductive

hypothesis about exec𝑛 (𝑒,−) to reason about exec𝑛+1 (𝑒, 𝜎).

B Case Study: Report Noisy Max
The Report Noisy Max mechanism (RNM) is a DP mechanism that receives a list of 𝑁 1-sensitive

queries, runs them privately by adding noise sampled from Laplace (ε/2), and returns the index

of the query with the highest value. While a naïve analysis of the algorithm using composition

theorems would show that the algorithm is (𝑁 · ε/2)-dp, the only information that is released is

the index of the highest query. All other (noisy) results are discarded. This suggests that a better

analysis should be possible. In fact, one can prove that RNM is ε-dp, in other words, its privacy cost

is completely independent of the number of queries.

We now show how this is proven in Clutch-DP. The implementation of RNM in RandML can be

seen in Figure 13, where qs is a list of queries, and qs[𝑖] returns its 𝑖-th element. The algorithm

simply iterates over the list of queries, while keeping track of the highest result so far (maxA) as
well as its index (maxI), and returns maxI at the end.

let RNM ε qs N db =

let maxI = ref (−1) in
let maxA = ref (0) in
let rec rnm i =
if i = N then !maxI
else let a = Laplace (ε/2) (qs[i] db) in

if i = 0 | | (!maxA) < 𝑎 then
maxA← a ;
maxI← i ;

else () ;
rnm (i + 1)

in rnm 0

Fig. 13. The Report Noisy Max mechanism

We can prove that RNM satisfies the following specification:

∀ qs N db db′ 𝑗 .

{
E× (ε) ∗ Adj(db, db′) ∗ ∀𝑖 . 1-sens(qs[𝑖])

}
RNM ε qs N db ­ RNM ε qs N db′

{𝑣 𝑣 ′ . 𝑣 = 𝑗 ⇒ 𝑣 ′ = 𝑗}
(14)

The precondition states that we own a privacy budget of E× (ε), that the databases we are considering
are adjacent, and that all queries in qs are 1-sensitive. This quadruple is stated in a pointwise manner:

we show that for every possible outcome 𝑗 if it is the case that the left-hand program returns 𝑗 ,

then so does the right-hand program. From this specification, by applying the general version of

the adequacy theorem (Theorem A.6), we can recover that RNM is externally ε-dp.
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