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Differential privacy is the standard method for privacy-preserving data analysis. The importance of having
strong guarantees on the reliability of implementations of differentially private algorithms is widely recognized
and has sparked fruitful research on formal methods. However, the design patterns and language features
used in modern DP libraries as well as the classes of guarantees that the library designers wish to establish
often fall outside of the scope of previous verification approaches.

We introduce a program logic suitable for verifying differentially private implementations written in
complex, general-purpose programming languages. Our logic has first-class support for reasoning about
privacy budgets as a separation logic resource. The expressiveness of the logic and the target language allow
our approach to handle common programming patterns used in the implementation of libraries for differential
privacy, such as privacy filters and caching. While previous work has focused on developing guarantees for
programs written in domain-specific languages or for privacy mechanisms in isolation, our logic can reason
modularly about primitives, higher-order combinators, and interactive algorithms.

We demonstrate the applicability of our approach by implementing a verified library of differential privacy
mechanisms, including an online version of the Sparse Vector Technique, as well as a privacy filter inspired
by the popular Python library OpenDP, which crucially relies on our ability to handle the combination of
randomization, local state, and higher-order functions. We demonstrate that our specifications are general
and reusable by instantiating them to verify clients of our library. All of our results have been foundationally
verified in the Rocq Prover.

1 Introduction

Differential privacy [15, 16] (DP) is a collection of programming techniques to release aggregate
information from a database while providing statistical guarantees about the privacy of individual
user data. DP has been used widely in government and industrial applications to protect critical
personal information (medical, financial, demographic, behavioral). The correctness of the imple-
mentations of DP is therefore crucial: logic- or implementation-level bugs can lead to catastrophic
failure of the promised privacy guarantees.

The importance of having trustworthy implementations of DP is widely recognized. On the one
hand, it has led to significant research in programming language and program verification. On the
other, industrial developments of DP are routinely accompanied by pen-and-paper proofs of their
claimed privacy properties. The OpenDP collaboration! even goes as far as to collect a proof for
each element of the library, which are checked by a “privacy proof review board”.

DP provides strong statistical guarantees that the data contributed by an individual does not
influence the result of the analysis by too much, and hence cannot be recovered by observing the
outcome. This is achieved by adding a small amount of random noise to each step of data analysis
that could leak private information. This way, even if the input data changes by a small amount
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(say, the data of one user in a database), we can expect the output of the noisy program output to
be similar, and an observer will not be able to tell whether the change comes from the noise or a
change in inputs. The strength of the privacy guarantee of differentially private (dp) programs is
governed by a parameter ¢ € Ry, that controls the overall probability that any user’s privacy is
compromised; a lower £ means a more private program.

Managing the privacy budget. A central idea of programming with DP is to think of the
parameter ¢ that controls the noise distribution as the “privacy budget”. To ensure that the whole
program P, written as a sequence of computations P = cg; cy;. . . ; ¢y, is e-differentially private (e-dp),
we can “allocate” some part ¢; of our budget to each part ¢; of the program and check that the
probability that ¢; compromises privacy is controlled according to ¢;. So long as the sum of the
error terms ¢; is below the global budget ¢, the program as a whole is e-dp. This principle is known
as the sequential composition theorem of DP, and it justifies our budget intuition of the privacy
parameter: ¢ represents a resource that can be split according to the structure of the program, and
is consumed by computing noisy results from a database.

The most widely used deployments of DP are based on dynamic techniques for tracking the pri-
vacy budget via a trusted library such as OpenDP (written in Python, Rust) or Google’s Differential
Privacy library (C++, Go, Java). Rather than specifying exactly how much ¢; each part of a program
consumes, the budget consumption of the completed computations cy;. . .;c;—1 is tracked, and a
runtime check ensures that enough budget for c; remains.

1.1 The Challenges of Verifying DP Frameworks

Most practical DP frameworks use “advanced” programming language features like higher-order
functions (e.g., in the form of classes or function pointers) and dynamically allocated, local state
(e.g., via class-private attributes). This is necessary to enable the modular construction of private
programs through an API, where a library client does not have to concern themselves with the
management of the privacy budget and correct application of noise to the results. To be able to reason
compositionally, privacy proofs of a library API should likewise support modular specifications. We
consider three representative challenges that arise from reasoning about libraries for DP:

(i) encapsulating dynamic, fine-grained budget accounting,
(ii) interactive or “online” data analysis,
(iii) budget minimization via caching.
As we shall see shortly, all three of these techniques rely on stateful randomized higher-order
functions to implement features that are essential to the modular construction of dp programs. To
verify modular API specifications we must thus support higher-order reasoning about local state.
We illustrate the programming patterns via Python code snippets inspired by OpenDP, but the
challenges also arise in, e.g., the C++ implementation of Google’s Differential Privacy library.?
Although the verification approach developed in this paper is for an ML-like core language (§2.3)
rather than Python, it can faithfully represent the salient aspects of these Python programs.

1.1.1 Dynamic budget accounting. An essential functionality of these libraries is that they
offer privacy filters [36] that encapsulate the intricate reasoning about the privacy budget in a
core, trusted APL. A privacy filter tracks the privacy cost that a program has incurred up to the
current execution point ¢; . . .; ¢;—1, and only executes c; if enough budget remains. The example
implementation of a simplified PrivacyFilter in Figure 1 is initialized with some budget and
provides a single try_run(cost, f) method, which only runs f if there is indeed at least enough

%See, e.g., https://github.com/google/differential-privacy/blob/0a3b05a65f7ed8de/cc/accounting/accountant.cc#L.46
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budget left to cover its cost. So long as each mechanism f correctly reports its budget consumption
(cost), the filter will ensure that the total privacy cost will never exceed the global budget.

class PrivacyFilter:
def __init__(self, budget):
self.budget_left = budget

def try_run(self, cost, f):
if self.budget_left < cost :
return None
self.budget_left -= cost
return f()

Fig. 1. PrivacyFilter ensures that no client can exceed the privacy budget.

Centralized dynamic budget management simplifies the privacy analysis of programs and allows
for scaling to industrial applications. Importantly, dynamically computed bounds enable a tighter
analysis of the privacy cost compared to static type checks [18, 27]. Recall that the usual sequential
composition theorem of DP requires that all ¢; be chosen upfront. The adaptive composition theorem
[36] for DP lifts this restriction and allows the analyst to adaptively chose each ¢; depending on the
results of previous (private) computations. Despite the successes of type- and program-logic-based
analyses of DP, none of the existing systems can be used to specify and verify the correctness of
implementations of privacy filters.

1.1.2 Interactive data analysis. Interactivity is central to real-world data analysis under DP.
Given a new dataset, a data analyst does not just issue a static set of queries. Instead, they may
compute some summary statistics to explore what ranges of values or categories of responses are
of interest, and construct further queries based on those observations. This interactive or “online”
style of analysis is crucial for practical utility [12, 16, 25]. A standard way to represent interactive
computations is as streams: given a stream of queries, a private interactive mechanism should
produce a stream of results.

The AboveThreshold mechanism in Figure 2 constructs a stream of booleans from a stream
of queries as an iterator. The n-th boolean indicates whether g, was above the threshold T, after
suitable Laplace noise was added. Crucially, the queries themselves are provided as an iterator
rather than as a precomputed list, and g, is only evaluated in the n-th call to __next__. The
AboveThreshold mechanism is e-dp because the stream stops producing results after the first time
True is returned; this is a standard result in DP but challenging to prove formally because it does
not follow simply from the sequential composition theorem.

class AboveThreshold:

def __init__(self, eps, T, queries, db): def __next__(self):
self.eps = eps if self.halted:
self.T = Laplace(T, eps/2) raise StopIteration
self.queries = queries g = next(self.queries)
self.db = db v = Laplace(q(self.db), self.eps/4)
self.halted = False b = (self.T <= v)
self.halted = b
def __iter__(self): return b

return self
Fig. 2. The classic Above Threshold interactive mechanism.

Any realistic verification framework for DP must therefore capture not only isolated, static
mechanisms but also their behavior as interactive, stateful processes that maintain internal state
and privacy budget across calls.
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1.1.3 Budget minimization via caching. Certain results (e.g., the number of non-zero entries)
have to be calculated many times over as part of different analysis passes on a dataset. This
can be wasteful in practical applications, since each private computation consumes some of the
privacy budget, even if the same result has already been computed elsewhere in the program.
Caching provides a solution to this problem: if the noisy results of queries are cached, then a
repeated query can simply reuse the prior noisy result without incurring any privacy cost. Recent
implementations of privacy frameworks have studied increasingly sophisticated caching strategies
for DP workloads [25, 26, 30, 34], but even simple implementations of caching via memoization
can lead to substantial savings in privacy budget in practical workloads [34][25, Fig. 3].

The implementation of memoization mk_query_cache in Figure 3 locally allocates a cache
associated to a mechanism add_noise and a dataset db and returns a closure f which can be used
subsequently to privately evaluate queries on db. Although it is a simple general-purpose caching
mechanism, studying it formally requires reasoning about local state and higher-order functions.
This places it outside of the scope of existing systems.

def mk_query_cache(add_noise, db):
cache = {}
def f(query):
if query in cache:
return cachel[query]
v = add_noise(query(db))
cache[query] = v
return v
return f

Fig. 3. A generic caching mechanism.

1.2 Formal Guarantees for Differential Privacy

DP lends itself well to the analysis via standard PL methods due to its compositional nature. We
distinguish two main classes of approaches. Type-based approaches [1, 8, 13, 18, 27, 28, 33, 35, 40—
42] use a static typing discipline to ensure that the programs accepted by the system are dp. These
approaches benefit from high degrees of automation. Most type-based approaches, however, do not
handle mutable state. More generally, the complex nature of the type systems required (dependent-,
linear-, contextual-, or refinement types, or combinations thereof), hinders their integration with
mainstream programming languages.

On the other hand, relational probabilistic Hoare logics such as apRHL [6, 7, 9], are more
expressive but require more user effort in the form of manual or interactive proofs. These methods
works particularly well when the program logic is defined with respect to a relatively simple
denotational semantics of programs as subdistributions. This, however, generally restricts the
applicability of the method to first-order programs. HO-RPL [2] extends the previous approach to
support higher-order functions by constructing a more sophisticated semantic model, but general
recursion or dynamic allocation and higher-order state are still unsupported. In a similar vein,
some projects verified the privacy of sampling algorithms and simple mechanisms directly in the
denotational semantics of programs [14, 39]. In summary, these approaches work well for the
verification of algorithms in isolation, but do not focus on supporting modular program verification.

1.3 Modular Verification for DP Libraries in Clutch-DP

To address the challenges arising from the verification of DP libraries, we introduce the relational ap-
proximate probabilistic higher-order separation logic Clutch-DP. Clutch-DP supports higher-order
functions such as PrivacyFilter and mk_query_cache via quantification over specifications, and
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references storing closures as they occur in the implementation of iterators (e.g., AboveThreshold)
via impredicative invariants a la Iris [24]. Building on previous relational separation logics [20, 21],
we internalize the privacy budget of DP in Clutch-DP as a first-class separation logic resource.
These privacy credits can be tracked in invariants and interact with the heap and with higher-order
functions that consume a privacy budget in flexible ways. We prove that the usual rules for (se-
quential) relational separation logic [17] are sound in the probabilistic setting. To reason about
privacy of primitives, we prove novel relational sampling rules for the Laplacian; in particular, we
internalize a proof technique based on choice couplings [4] as a logical rule, which, in particular, is
used in the privacy proof of AboveThreshold. We apply Clutch-DP to a number of case studies
inspired by the challenge problems described above. Our specifications of, e.g., AboveThreshold
are compositional and reusable: we derive the privacy of clients and more complex mechanisms
from the specifications of the building blocks, without referring to implementation details.

Contributions. To summarize, we make the following contributions.

(1) A higher-order separation logic for DP which internalizes privacy credits as first-class,
composable logical resources and which supports heap allocation and higher-order closures.

(2) New probabilistic sampling rules, including a Laplacian rule that enables selective recovery of
privacy credits, which can be used to verify examples whose privacy analysis goes beyond
composition theorems.

(3) Alibrary of reusable, abstract specifications for common DP primitives (Laplace, AboveThresh-
old, Sparse Vector Technique, Report-Noisy-Max, Privacy Filters, Caching via Memoization)
that cleanly separate mechanism proof from client reasoning.

(4) Client case studies that highlight both expressiveness and reusability of specifications and
that demonstrate that our approach successfully addresses the challenges outlined above
(dynamic budget accounting, interactive data analysis, and budget minimization via caching).

(5) Mechanized proofs: a foundational formalization of the logic and all case studies in the Rocq
Prover together with an adequacy theorem connecting our logic to standard DP.

Outline. In §2 we briefly recall the basic notions of DP and define the RandML programming
language used in the remainder of the paper. In §3 we define the Clutch-DP logic and explain how
it relates to DP. In §4 we illustrate reasoning in Clutch-DP via a number of case studies addressing
the challenges set out in §1.1. The soundness of Clutch-DP is addressed in §5. Finally, in §6 we
survey related work, before concluding in §7.

2 Differential Privacy and Programming Language Preliminaries

We briefly recall the elements of probability theory §2.1 and DP §2.2 we need to refer to, and
formally define the programming language §2.3 used throughout the paper.

2.1 Probability Theory

Since we do not assume a priori that all programs we study terminate, we allow programs to “lose
mass” on diverging runs and define the operational semantics using probability sub-distributions.

DErFINITION 2.1. A discrete subdistribution (henceforth simply distribution) on a countable set A
is a function p : A — [0, 1] such that ), ,c 4 p(a) < 1. The distributions on A are denoted by D(A).

In §2.3, we will define the operational semantics of RandML in terms of the distribution monad.
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LEMMA 2.2. The discrete distribution monad induced by D has operations
ret: A — D(A) bind : (A — D(B)) —» D(A) — D(B)

1 ifa=d

0 otherwise

bind(f.)(b) £ Y j(a) - f(a)(b)

acA

ret(a)(a’) £ {
We write (u >= f) for bind(f, ).

2.2 Differential Privacy
For background information on DP see, e.g., Dwork and Roth [16] and Cowan et al. [12].

Defining privacy. The definition of DP captures the intuition that it is hard to reconstruct
information about any individual in a database from the output of a dp program.

DEFINITION 2.3. A function f : DB — D(X) is (¢, §)-differentially private (short: “f is (¢,8)-dp”)
if Prr)[@] < e -Prpy)[¢]+ 06 forall adjacent x,y : DB and all predicates ¢ C X. If f is (&,0)-dp
we simply say that f is e-dp.

A function is thus (e, §)-dp if it amplifies the probability of any observation ¢ by at most e¢, or
by more than that with probability at most 8. A small value for ¢ and § thus means strong privacy
guarantees. The definition of DP is parametrized by a type of databases DB and an adjacency
relation. Clutch-DP can work with any database type and adjacency relation, but a common choice
is to think of a database as a list of rows where each row is a tuple of a fixed size. If the type of
databases comes with a notion of distance dpg : DB — R, we say that two databases x, y are
adjacent if dpg (x,y) < 1. For instance, if dpg (x, y) is the number of rows where x and y differ, then
adjacency means they only differ in one row.

Adding noise: the Laplace mechanism. To prove
that any program is dp, we need primitives that add ran-
dom noise. The prototypical example of a noise mecha-
nism that achieves DP is the Laplacian distribution. How-
ever, since the Laplacian is a continuous distribution on
R, an implementation of a Laplacian sampler would have
to work with exact real arithmetic, since implementations
using floats lead to well-known privacy bugs [31]. :

We therefore work with the discrete Laplacian, the -4 -3 -2 -1 0 1 2 3 4 5
distribution on Z obtained by discretizing the continuous  Fig 4. Continuous and discrete Laplacian,
Laplacian. The discrete Laplacian with scale parameter ith LI (v) for v=2 and m € {0, 1}, demon-
¢ and mean m has as probability mass function® [22, 23]: strating 0.7-DP: £} (2) < €7 - £3.(2) .

Discrete Continuous
* ==0.7, m=0

e=0.7, m=1

S &

— £=0.7, m=0

\ e=0.7, m=1

S O

Probability

o o = = oo W w
ST o o C 4

1
L) = W . e~clo-ml where W £ Z eclel (1)

z€Z

Interpreting adjacency on Z as being at distance at most ¢, we have the following result.
THEOREM 2.4 ([19]). (A m. L;"/C) 1 Z — D(Z) is e-dp.

As a direct consequence, given any function f : DB — Z such that |f(x) — f(y)| < 1 for adjacent
datasets x, y : DB, the function (Am. L") o f : DB — D(Z) is e-dp.

3NB: The weight W is a geometric series over Z (hence why £, is also called the (two-sided) e-geometric) with the closed

form L7 (v) = 22;} -e#1o=ml [11]. We adopt the convention that L7 =ret(m) ife < 0.
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Composing DP. Differentially private functions satisfy a number of composition laws that can
help structure and simplify the privacy verification of larger programs.

LEmMMA 2.5. DP is stable under post-processing: if f : A — D(B) is (¢, 6)-dp then for any
g : B — C, the function A x. (f(x) >=Ay. ret g(y)) : A — D(C) is (& 6)-dp.

When two dp functions are composed sequentially, their privacy parameters add up. Due to the
post-processing property this holds even if the later computations can see the results of earlier
computations. We only show the case for two functions, but the lemma directly generalizes to
arbitrary k-fold composition for k € N.

LEMMA 2.6 (SEQUENTIAL COMPOSITION). Let f : DB — D(B) be (&1, 01)-dp and let g be a function
g : DB x B — D(C) such that (A x. g(x,b)) : DB — D(C) is (&2,02)-dp for all b € B. Then
Ax. (f(x)>=A1b.g(x,b)) is (&1 + 2,01 + O2)-dp.

Another useful composition law holds for functions which increase the distance between inputs
by at most a fixed amount ¢ in the following sense.

DEFINITION 2.7. We say that f : A — B is c-sensitive (also: “c-stable”) if for all x,y € A, the
bounddp(f(x), f(y)) < c-da(x,y) holds, where the distances d4, dg are taken with respect to a metric
space structure on A and B.

Note that if f : A — B is c-sensitive and g : B — C is d-sensitive then g o f is (c-d)-sensitive.
The following metric composition law then generalizes the remark following Theorem 2.4.

LeEMMA 2.8. If f : DB — Z is c-sensitive then (A m. LZ}C) of:DB — D(Z) is e-dp.

2.3 The Language: Randomized ML

The RandML language that we consider is an ML-like language with higher-order recursive func-
tions and higher-order state that we extend with an operator Laplace a b m that samples from the
Laplacian with scale (a/b) and mean m. The syntax is defined by the grammar below.

o,weValz=zeZ|beB|()|t€Lloc|recfx=e]|(v,w)]| inlo]| inrov

ecExpru=v|x|recfx=e|erex|e1+ex]es—ex| ... |ifetheneselsees | (e1,€2) | fste] ...
ref e; | le|e; <« es| Laplace ejezes | ...

KeEctx:= — |eK|Kov|ref K| !K|e« K|K < v| Laplacee; e, K| Laplacee K v | ...

o € State = Loc 1™ Val p € Cfg = Expr X State

In RandML, ref e; allocates a new reference containing the value returned by ey, ! e dereferences
the location e evaluates to, and e; « e; evaluates e, and assigns the result to the location that e;
evaluates to. We may refer to a recursive function value rec f x = e by its local name f. The heap is
represented as a (partial) finite map from locations to values, and evaluation happens right to left
as indicated by the evaluation context grammar Ectx.

The expression Laplace a b m samples from the discrete Laplacian with scale ¢ = a/b and mean m.
To avoid unnecessary complications with adding real numbers to the programming language, we
require the scale ¢ to be a rational number. Formally, in RandML, Laplace takes three integers
as input, but to keep our notation free from clutter we will simply write Laplace e m instead of
Laplace abm with € = a/b.

Operational Semantics. Program execution is defined by iterating step : Cfg — D(Cfg),
where step(p) is the distribution induced by the single step reduction of the configuration p.
The semantics is mostly standard. We first define head reduction and then lift it to reduction in
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an evaluation context K. All non-probabilistic constructs reduce deterministically as usual, e.g.,
step((Ax. e)v,0) = ret(e[v/x], ). We write e ~» ¢’ if the evaluation is deterministic and holds
independently of the state, e.g., (A x. e) v »» e[v/x] and fst(v1,02) ~» v;. The sampling operator
Laplace a b m reduces according to the Laplacian with scale a/b and mean m, i.e.,

L;"/b(v) forv € Z,

0 otherwise.

step(Laplaceabm, o) (v,0) = { (2)

With the single step reduction step : Cfg — D(Cfg) defined, we next define a step-stratified
execution probability exec,,: Cfg — D (Val) by induction on n:

1 ifeeValAhe =uv,

0 otherwise.

execy(e,0)(v) = {

1 ifeeValAe =0,

2 (e o) eExprxstate Step (e, ) (€', 0”) - execp (€, 0”)(v)  otherwise.

execp+1(e,0)(0) = {

That is, exec, (e, 0)(v) is the probability of stepping from the configuration (e, o) to a value v in at
most n steps. The probability that an execution, starting from configuration p, reaches a value v is
taken as the limit of its stratified approximations, which exists by monotonicity and boundedness:

exec(p)(v) £ lim,_exec,(p)(v)

The interpretation of programs as distributions induces a natural notion of (¢, §)-DP for RandML
programs. Concretely, if f € Expris a RandML function then for adjacent databases x, y it should
be the case that for all states o,

Prexec(f inj(x), o) [¢] <e- Prexec(f inj(y), o) [¢] +6 (3)

where inj : DB — Val embeds the type of databases into RandML values (we usually omit inj).
Note that in particular f = (A x. Laplace £ x) is e-dp in the sense of (3) by the definition of the
operational semantics (2) and Theorem 2.4.

3 Program Logic

In this section, we introduce the Clutch-DP logic, the soundness theorem of Clutch-DP, which
connects it to DP, and the new logical connectives and rules pertaining to the privacy budget
reasoning. On the surface, our logic looks similar to Approxis [21], but we remark that the underlying
model is different, and that it is designed to support our novel reasoning principles for DP.

The logical connectives. Clutch-DP is built on top of the Iris separation logic framework [24]
and inherits many of Iris’s logical connectives, a selection of which is shown below. Most of the
propositions are standard, such as separating conjunction P = Q and separating implication P — Q.

P,Q € iProp :=True | False |PAQ|PVQ|P=Q|Vx.P|3x.P|P+Q|P — Q|
tu|tosol| £5(e) | £7(6) | {Preze {vd.0} ] ...
Since DP is a relational property, Clutch-DP is a relational program logic that proves properties about

the execution of two programs e and e’. The central logical connective capturing the relationship
between e and e’ is the Hoare quadruple:

{P}exe {vd.Q} (4)

Intuitively, this quadruple asserts that under the precondition P, if the two programs e and e’ evaluate
to results v and o’ respectively, then the postcondition Q holds. Since the pre- and postcondition
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range over arbitrary Clutch-DP assertions, they can refer to the state or contain nested Hoare
quadruples, which will be useful to write specifications about higher-order functions.

Logical assertions about the heap come in two versions, one for e and one for e’. The heap
points-to assertion that denotes ownership of location ¢ for the left-hand side program e is written
as £ — v, and ¢’ 5 v’ denotes ownership of ¢’ for the right-hand side program e’.

Clutch-DP defines two kinds of resources that are novel with respect to standard Iris and which
are inspired by Approxis [21]. The proposition #* (¢) asserts ownership of ¢ multiplicative privacy
credits and #*(5) similarly asserts ownership of & additive privacy credits. These credits are a logical
representation of the privacy budget of DP. Just as reasoning about the physical state of a program
is logically captured by the points-to connective, so is reasoning about the privacy budget (¢, 6)
logically expressed via privacy credits.?

Internalizing privacy. We now have all of the ingredients to define DP internal to Clutch-DP.

DEFINITION 3.1. A RandML function f is internally (¢, §)-dp if the following quadruple holds:
vdbdb’. {Adj(db,db’) = £*(e) = £*(8)} fdb 3 fdb’ {v, 0.0 =0"} (5)

As with the usual (“external”) definition of DP, this notion is parametrized by an internal
adjacency relation Adj(db, db”) on inputs. For instance, we could represent the databases as lists,
where each element represents one entry, and say two databases are adjacent if they differ only in
one entry (when considered as multisets). We abbreviate the Hoare quadruple (5) as (¢, §)-iDP(f)
when the relation is clear from context, and simply ¢-iDP(f) for the case where § = 0.

The precise meaning of Hoare quadruples and privacy credits can be understood through the
following theorem which connects Clutch-DP to DP in the sense of (3).

THEOREM 3.2 (SOUNDNESS). If f is internally (&, 8)-dp then f is also externally (e, §)-dp.

This theorem is a consequence of the adequacy of the semantic model of Clutch-DP (see §5).

3.1 Relational Separation Logic Rules

The standard rules of relational separation logic as used in, e.g., [17] are also available in Clutch-DP.
For instance, the FRAME rule enables local reasoning by framing out R, and the BinND rule allows us
to focus on sub-programs in evaluation contexts. The usual load and store rules for heap locations
come in a left- and a right version, requiring ownership of the corresponding points-to connective.

{P}e 3¢ {Q} {P}ez e {vv'.R} Yoo’ {R} K[v] 3 K'[0'] {Q}
RAME BinDp
{P+R}ese {Q=R} {P}YKl[e] 3 K'[']{Q}
{t—>wiwze {0} {t' —swhe 3 w{Q} {t—>w}() e {0}
Loap-L LoaDp-r STORE-L
{t—>w}'eze {0} {t/ >swhe 3! {Q} {t—>o}t—w=ze {0}

Fig. 5. Excerpt of the non-probabilistic rules of Clutch-DP.

It is worth noting that the rules in Figure 5 do not mention distributions, despite the fact that the
operational semantics of RandML is probabilistic in general and references can, for instance, store
randomly sampled values. Clutch-DP thus provides a convenient basis for program verification
where reasoning about privacy is integrated as an orthogonal feature while preserving the familiar
rules of relational higher-order separation logic.

4Contrary to heaps, the privacy budget pertains to a pair of program executions rather than to the left or right program,
and hence there is no left- and right-hand version of credits; instead, they are shared.
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3.2 Privacy Credit Laws

The privacy credit resources logically track two non-negative real numbers ¢ and § corresponding
to the privacy budget. In light of this intuition, one would expect that they support laws such as
sequential composition (Lemma 2.6). Indeed, we can derive an internal version of this law from the
primitive rules pertaining to privacy credits show in Figure 6 together with the structural rules for
RandML in Figure 5.

£ (e1+ &) 4 £7(e1) * £ (e2) £5(81 + 82) - £5(81) * £7(52) £*(1) + False
Fig. 6. Privacy credit laws.

Just as in Lemma 2.6, both multiplicative and additive privacy credits can be split into their
summands® (and recombined). The last rule states that from 1 additive error credit, we can derive
False and hence anything. This makes sense if we recall that § models a bound on an inequality
between probabilities in the definition of DP (Def. 2.3), since any probability is bounded by 1, and
hence any program is trivially (e, 1)-dp.

The fact that the privacy budget is treated like any other separation logic resource and being
able to split the budget enables flexible reasoning about privacy. Privacy credits are animated by
the rules that govern their interaction with the operational semantics of RandML via sampling.

3.3 Rules for Sampling Noise

Privacy credits are consumed by the rules that reason about sampling operations. We introduce a
rule LAPLACE-SHIFT to reason about a pair of Laplacians, with the same parameter ¢ and means
m, m’. By setting k = 0 (and thus, |m — m’| < ¢), the rule lets us spend £*(c - ¢) to ensure that both
Laplacians return the same result. If, instead, k > 0 and ¢ = 0 (and thus, |m — m’| = k), the rule
lets us conclude, without consuming privacy, that we will get two samples at distance k. The rule
combines the two reasoning principles into one:

lk+m-m'|<c
LAPLACE-SHIFT

{!X (c- 5)} Laplacee m 3 Laplacee m’ {z 2’ .z2" =z + k}

A consequence of LAPLACE-sHIFT (when k = 0) is that Laplace is internally private, i.e., the Clutch-
DP statement e-iDP(A x. Laplace ¢ x) is derivable. This internalizes DP of the Laplacian (Thm. 2.4).

Finally, we have the following novel rule for the Laplacian which can be used to recover some
privacy credits. The idea is to partition the results into two groups of outcomes depending on some
threshold T. If both Laplacians sample a result above T (in fact, above T + 1 for the right-hand side)
the privacy credits are consumed. If, on the other hand, both results remain below their respective
thresholds, then the privacy credits can be recovered. This yields a useful reasoning principle for
the Laplacian that is applied, e.g., in the verification of the AboveThreshold mechanism (§4.1.1).

Im-m'| <1 TeZ

, , (T<zAT+1<72) VvV
{jx(zg)} Laplace e m < Laplacee m {zz (2<T AZ <T+1 % £(2))

LAPLACE-CHOICE

Intuitively this rule is sound because it partitions the outcomes into disjoint events such that the
total privacy budget for the two is bounded by the initial privacy budget. Despite its conceptual
simplicity, constructing a sound model that validates LAPLACE-CHOICE required substantial new
insights in the form of a new composition theorem (see Theorem A.5).

SNB: Both kinds of privacy credit are split into separating conjunctions by using addition, not multiplication, as the resource
algebra operation. The name “multiplicative privacy credit” for £* (¢) derives from the multiplicative factor e® in Def. 2.3.
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3.4 Internal Composition Laws

Working in a program logic makes it simple to internalize the various composition laws for DP, as
presented in §2. First, we remark that the internal version of post-processing holds. This is stated
in our logic through the following lemma:

LEMMA 3.3 (INTERNAL POST-PROCESSING). Let f be internally (¢, §)-dp and assume g is “safe to
execute” in the sense that Vw. {True} gw 3 gw {vv’.v =0’} holds. Then g o f is internally (¢, 5)-dp.

This lemma can be proven entirely within the logic as an immediate consequence of the BIND
rule. We can also recast the notion of sensitivity (Def. 2.7) in Clutch-DP.

DEFINITION 3.4. A RandML function f is internally c-sensitive (c-sens(f)) if the following holds:
Vxy: A {True} fx 3 fy{oo'.dp(v,0") <c-da(x,y)}

As before, the definition is parametrized by two distances at types A and B, which can then
be internalized as distances between values. The internal equivalent of metric composition then
follows.

LEMMA 3.5. Vfce. c-sens(f) —« e-iDP(Ax. Laplace (¢/c) (f x)) is derivable in Clutch-DP.

4 Reusable Specs for Privacy Mechanisms

Privacy mechanisms are the primitive building blocks of DP. Mechanisms sample the appropriate
noise for a given data processing task. We give specifications for some widely used mechanisms
and demonstrate that clients can be verified based on these abstract specs.

Our first example will be the Above Threshold (AT) mechanism, and we will see how to (1)
prove that it satisfies an abstract specification capturing its privacy, (2) build the Sparse Vector
Technique (SVT) from it, and (3) use AT to calculate the clipping bounds required to privately
compute averages over a dataset. Both (2) and (3) use the same abstract specification of AT.

Besides the case studies presented hereafter, we also verified the privacy of the Report Noisy Max
mechanism, which is of note because—as with AT—its privacy does not follow from composition
laws but requires careful manipulation of the privacy budget and the use of budget- and state-
dependent invariants. Details can be found in §B. We will present the most interesting ideas for
each proof. Full proofs from the rules of Clutch-DP are available in our Rocq formalization.

4.1 Sparse Vector Technique

Suppose we have an incoming sequence of (1-sensitive) queries on a database and a fixed privacy
budget. The Sparse Vector Technique (SVT) allows us to fix a threshold T and release, in a private
manner, whether the result of each query exceeds T or not. The benefit of SVT is that one only has
to spend privacy budget on the “successful” queries which do indeed exceed T and are released; the
results of the queries that do not exceed the threshold can be computed (and discarded) without
incurring a privacy cost. We can thus set in advance a maximum number N of successful queries
to be released, and keep answering incoming queries interactively until N is reached. The SVT is
usually implemented in terms of the Above Threshold mechanism (AT), which finds a single query
above T. SVT then simply runs N iterations of AT. The privacy cost of SVT is N times the cost of
finding one query above T.

The SVT is of interest for verification because several buggy privacy proofs have been published
(see Lyu et al. [29] for a survey). As the survey explains, the SVT is particularly interesting in the
interactive setting; in the non-interactive setting, one can use the Exponential Mechanism instead
and get more accurate results. We explore two subtleties of SVT: how to perform the privacy
analysis of AT, and how to build an interactive algorithm out of AT. The privacy analysis of AT
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(and SVT) is challenging because it requires fine-grained reasoning about the privacy budget that
cannot be justified by the sequential composition law alone.

4.1.1 Above Threshold. The Above Threshold mechanism can be used to evaluate queries on a
database until one query returns a result that exceeds a specified threshold T. The implementation
of above_threshold in Figure 7 initializes the noisy threshold T and returns a function to run queries
interactively. This function receives a query, computes its result, adds additional noise to it and
checks whether the noisy result exceeds T.

let above_threshold e T = let T = Laplace (¢/2) Tin
letfqdb=letx=qdbinlety = Laplace (¢/4) xinT <y
inf
Fig. 7. The Above Threshold mechanism.

Example 4.1. Suppose we want to privately compute the number of even numbers in a list and
check whether it exceeds a threshold of 3. If we run AT with a low privacy budget (e.g., ¢ = 107%)
there is very little noise added and we are very likely to observe the true result, i.e.

above_threshold 1073 3 (List.count (Ax.x mod 2 =0)) [1,2,3,4,5] — false
above_threshold 1073 3 (List.count (Ax.x mod 2 =0)) [1,2,3,4,5,6] — true

As the value of € increases, we are more likely to observe true in the first query or false in the
second, i.e., privacy improves.

Our specification (6) captures the idea that above_threshold is interactive: after initialization, the
function f can be used to compare a query to the (noisy) threshold T until a result above T is found,
but queries can be supplied and chosen one by one after observing the result of previous queries.

(7}
above_threshold ¢ T < above_threshold e T
JAUTH. AUTH =
(AUTH = Adj(db, db’) * 1-sens(q)} ©)
Vdbdb' q. fqdbxf qdb
{bb'.b="0"x*if notb then AUTH}

ff.

Let us unpack the specification piece by piece. After initializing the mechanism with a privacy
budget of ¢, we obtain a pair of functions f and f’, where both functions represent the same
computation but with a priori different randomly sampled values of T, as well as an abstract
“authorization token” AUTH. The Hoare quadruple for f, f” in the postcondition indicates that so
long as we have the AUTH token, running the functions on a 1-sensitive query q and adjacent
datasets (1) produces the same result for both q db and q db’, i.e., the computation is private, and
(2) only consumes the AUTH token if q db is above T. If the result of the comparison is false,
AUTH can be recovered in the postcondition and we can continue to privately look for a query
that exceeds T. Note that the initial budget £*(¢) is only spent once at initialization, but we can
still privately run as many queries as it takes to get a result above the threshold.

Proving Privacy. The proof of the specification (6) proceeds as follows:

(1) We split £*(¢) into £*(¢/2) = #*(e/2) and use the first half to pay for the LAPLACE-SHIFT
rule with parameters m = m’ =T, ¢ = 1,k = 1. We thus obtain related results 'i', 7 for the
left- and right-hand program such that T/ = T + 1. Forcing the two noisy thresholds to be at
distance 1 rather than equal is a standard “trick” in the analysis of Above Threshold.
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(2) We pick AUTH £ #*(¢/2) and use the remaining budget to provide the initial AUTH token.
(3) We now have to show the specification for

f qdb £ letx =qdb inlety =Laplace (¢/4)x inT <y

f qdb’ £ letx’ =qdb’inlety’ = Laplace (¢ / 4) X inT' <y’

>

(4) By sensitivity of q and adjacency of the databases, x and x” are at distance at most 1.

(5) By the definition of AUTH, the precondition of the refinement confers us a privacy budget
of £*(¢/2). We use this budget to apply the LapLACE-CHOICE rule and partition the outcomes
(y,y ) of the remammg Laplace sampling into two mutually exclusive cases:

e T< Y and T/ < y’. In this case, both of the comparisons return true.
ey < Tandy < T.In this case, both comparisons return false, the rule does not
consume the privacy budget and we can return AUTH.
Either way, f and f’ return the same result b, and if b = false then AUTH is returned too. O

To see that the specification (6) is indeed useful, we will now use it to verify the privacy of the
interactive sparse vector technique.

4.1.2 An interactive Sparse Vector Technique. We prove privacy of the interactive SVT directly
from the abstract specification of the AT mechanism (6). SVT orchestrates repeated invocations of
above_threshold in order to identify the first N of the queries that exceed the threshold T. Unlike
a purely batch-style algorithm, the SVT exposes a streaming interface that allows queries to be
submitted interactively, i.e., depending on the results of earlier queries. This makes the verification
of privacy significantly more challenging, as the set of queries cannot be fixed in advance but
may depend on previously released (noisy) information. In Clutch-DP however, the proof that
sparse_vector is dp is a relatively straightforward consequence of the privacy of above_threshold.

The implementation in §.1.2 works as follows. It maintains two pieces of mutable state: a reference
AT to the current Above Threshold instance and a counter that tracks how many additional true
results (i.e., queries that exceed the threshold) may still be released. Each invocation of the returned
function f runs the current above_threshold instance on a new query q and database db, producing
a boolean result b. If b is true and the counter has not yet reached zero, the mechanism consumes &
privacy credits and reinitializes AT with a fresh Above Threshold instance. Otherwise, the counter
and function reference remain unchanged. The caller may then use the result b to decide which
query to issue next.

let sparse_vectore TN = let SVT _streame TN QS db =
let AT = ref (above_threshold £ T) in let f = sparse_vector e T N in
let counter = ref (N — 1) in let reciteri bs =
letfqdb=Iletb=(!AT) qdbin if i = N then List.reverse bs
if !counter > 0 & b then elseletq=QS bsin
( counter « (! counter —1); letb=fqdbin
AT « above_threshold e T ) ; iter (if b then (i + 1) else i) (b :: bs)
b initer 0 []
inf

Fig. 8. The Sparse Vector Technique and a streaming client.
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The specification (7) formalizes the intuition that the interactive SVT behaves like a private state
machine that can be queried multiple times while consuming a fixed privacy budget.

N0
sparse_vector ¢ T N < sparse_vectore TN
JiSVT.iSVT(N) *
{iSVT(n + 1) = Adj(db, db") * 1-sens(q)} )
Vdbdb' qn. fqdb=f qdb’
{bb'.b=0b"*iSVT(if bthennelsen+1)}

ff.

Initially, the mechanism owns a total privacy resource of £*(N - &), corresponding to N possible
above-T releases. The abstract token iSVT(K) in the postcondition tracks the remaining number K
of true results we can release. The returned function f satisfies the nested quadruple: if we own at
least iSVT(1), we can run a 1-sensitive query on adjacent databases and ensure we get the same
result; if the result is true (i.e., the query exceeds the threshold), we decrease iSVT by 1, otherwise
we get back our initial token. This specification thus captures both the privacy accounting and the
interactive behavior of SVT: the mechanism remains private for any adaptively chosen sequence of
1-sensitive queries until the allotted number N of positive releases has been exhausted.

Notably, the proof of this specification treats AT abstractly and relies only on its specification (6),
not its implementation, which gives us a more modular analysis. The proof relies on keeping a
simple invariant over the counter, the AT reference and the remaining privacy budget.

To summarize, this implementation and our verification of it has several noteworthy features:

e the SVT is a client of AT via an abstract specification,
e its interactive interface is specified through nested Hoare quadruples, and
e it requires storing a private higher-order function in a reference.

Next, we demonstrate that our specifications are expressive enough for reuse by different clients.

4.1.3 SVT Client: Streams of Queries. The standard textbook account of SVT [16] presents
it as an algorithm that takes in a stream of queries QS and produces a list of booleans bs where
b; indicates whether the i-th query was above the noisy threshold. The stream is represented as
a (possibly stateful) function that produces a new query on each invocation, and interactivity is
modeled by the fact that each time a new query is requested, QS gets access to the booleans bs
resulting from the preceding queries.

We can directly prove that the implementation SVT_stream (§4.1.2) is private by applying the
generic specification for SVT. A user of SVT_stream only has to satisfy the textbook assumption
that all of the queries are indeed 1-sensitive. The privacy reasoning is encapsulated in (7).

4.1.4 Above Threshold Client: auto_avg. As a last application of the Above Threshold mecha-
nism, we analyze the auto_avg client that privately computes the average of a dataset. This example
is taken from the online textbook [32, Chapter 10].

The fact that both sparse_vector and auto_avg can both be verified against the same abstract
interface for above_threshold is good evidence that our specifications are indeed reusable and can
be used to verify libraries without having to worry about implementation details.

To privately compute the average of a dataset it is not enough to first compute the average and
then add & Laplacian noise for a fixed ¢, as this may leak information about the size of the dataset.
The noise has to be calibrated to the largest element—but that value in itself is private information!

The solution adopted in the implementation of auto_avg in Figure 9 is to “clip” the elements of
the database to lie in a bounded range [0, B]. If two adjacent databases are clipped to the same
bound, their sum can differ by at most B. In other words, we can prove that clip_sum B is internally
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let auto_avg bnds e db = let mk_query b db =
let bound = get_clip_bound bnds & dbin (clip_sum b db) — (clip_sum (b + 1) db)

let sum = clip_sum bound db in let clip_sum bound db =

List.sum (List.clip bound db)

let AT liste Tdb gs =
let AT = above_threshold ¢ T in
List.find (A (bound, q). AT q db) gs

let sumpoisy = Laplace (¢ / bound) sumin
let countpeisy = Laplace & (List.length db) in
SUMnoisy / COuntnoisy

let get_clip_bound bnds e db =
let gs = List.map (A b. (b, mk_query b)) bnds in
let (bound, _) = AT _list e 0 db gsin
bound

Fig. 9. Privately computing the average of a list of data.

B-sensitive. We can apply internal metric composition (Lem. 3.5) to show that computing sumpjsy
by adding to the clipped sum Laplacian noise with scale (¢/B) is e-private. Therefore, auto_avg
achieves (3-¢)-DP, where the budget is divided equally between the call to get_clip_bound and the
two calls to Laplace:

{#*(3-¢) * Adj(db,db’)} auto_avg bnds & db 3 auto_avg bnds e db’ {x x".x =x'}

The utility of auto_avg stems from carefully choosing B. Given a list of candidate bounds bnds
we can do this privately via the AT mechanism. The function get_clip_bound to finds the first value
b in bnds such that the sum of elements in db stops increasing if the clipping bound is relaxed from
b to b + 1. Testing this for all values in bnds via mk_query is 1-sensitive. Therefore we can directly
apply the specification (6) for above_threshold to derive that get_clip_bound is e-dp.

4.2 Privacy Filters

A common implementation technique for DP in general-purpose programming languages is to
explicitly track the remaining privacy budget as a program variable. At the beginning of a data
analysis, this variable is initialized to the global privacy budget ¢, and it must remain non-negative
throughout the program execution. So long as care is taken to decrement the budget every time
(noisy) data is released, the whole data analysis is e-private. To ensure that these rules are respected,
the management of the privacy budget is commonly encapsulated in a privacy filter, a higher-order
function that runs a computation only if there is sufficient budget for it. This programming pattern
provides a separation of concerns: if the privacy analysis of the individual computations is correct,
and the filter is correctly implemented, then the entire computation is private. This allows us to
verify the different components (privacy filter and mechanisms) modularly.

let privacy_filter epydget = let adaptive_count ecoarse €precise T €budget Predicates db =
let erem = ref epudget in let try_run = privacy_filter epudget in
let try_run gcost f = List.map (A pred. let nexact = List.count pred db in
if erem < €cost then letg _ = Laplace gprecise Nexact iN
None let f _ =let neoarse = Laplace €coarse Nexact iN
else let nprecise = if T < Neoarse
€rem < ! €rem — €cost ; then try_run gprecise g
Some (f ()) else None in
intry_run (Ncoarses nprecise)

intry_run €coarse )
predicates

Fig. 10. Implementations of a Privacy Filter and Adaptive Count.
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The implementation privacy_filter in Figure 10 works as follows. Upon initialization it allocates
a reference that tracks the remaining privacy budget and returns a closure try_run that can be used
to run private computations in an interactive manner. If a client tries to run a computation with
cost exceeding the remaining budget, try_run does not run the computation, otherwise it decreases
the budget by the cost, runs the computation, and returns the result.

For the sake of simplicity we present a privacy filter that only tracks the e-budget, but the method
directly generalizes to (¢, §)-privacy filters.

4.2.1 Proving Privacy of Privacy Filters. The high-level intuition for the privacy filter is that it
should never exceed the budget that was initially set up so long as any client that calls try_run ecost f
ensures that f is indeed eost-dp. This intuition is captured by the following specification.

{#* (ebudget) }
Y €hudget - privacy_filter epydger 3 privacy_filter epydget (8)
{try_run try_run’ .3 iPF.iPF * try_run-spec}

where try_run-spec is defined as

iPF * Inouf
5 {#* (ecost) * iPF * Invg} £ () 3 () {v 0. 0 =0’ * iPF * Ino¢}
Vecost f T Inovg . try_run geost T 3 try_run’ ecoqr f7 9)
{bb’.b=10"+iPF = Inv;}

The existentially quantified iPF token in the postcondition of (8) represents a client’s ability to exe-
cute computations privately via try_run. The specification (9) defines the behavior of try_run gcost f.
Assuming that for a privacy cost of eost the functions f and f” produce equal results and maintain an
invariant Inog, calling them through try_run (and try_run’ respectively) satisfies the same invariant
regardless of whether there actually is enough budget left to execute f. Since f may itself contain
calls to try_run, the specification for (f, f') has access to the iPF token. We give a simple application
of this expressivity in the form of nested calls to the privacy filter in §4.2.2.
The proof of the specification in Clutch-DP is straightforward. We define the token iPF as

’

Je. £5(e) * Erem PO € % €y Fs £ -

The link between the logical resource representing ownership of the error budget and the program
state tracking the remaining budget allows us to conclude that the call to Some (f ()) in the definition
of try_run is only executed when sufficient privacy budget remains to satisfy the precondition of
(f,f") in (9), and hence the invariant Inof is satisfied. In case try_run decides that the budget is
insufficient for f, the invariant is trivially preserved.

The power of this specification for privacy_filter lies in the fact that a client does not have to
perform any privacy accounting or reasoning whatsoever for try_run g.s f! We can conveniently
combine library functions to build a private f and run it without having to worry whether we still
have enough budget: the filter ensures that the initial budget is never exceeded.

4.2.2 Client: Adaptive Counting. Another advantage of implementing DP through privacy
filters is that it allows the data analyst to decide dynamically where the privacy budget should be
spent, ie., the way the budget is spent can adapt to the results of prior analyses. This is especially
useful in exploratory data analysis when it is unclear, a priori, what values the dataset ranges over.

The example adaptive_count in Figure 10 employs a form of adaptivity to privately count the
number of elements of db that satisfy each of the tests in the list of predicates. First, a cheaper but
less precise count is performed, consuming €coarse privacy credits. Only if this yields a promising
result that exceeds a threshold T, a more precise analysis is performed for an additional larger
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budget of eprecise. The result of adaptive_count is thus a numeric estimate for each predicate, with
a more precise value for a few “important” candidates.

A conservative privacy analysis would have to assume a worst-case cost of length(predicates) -
(£coarse + Eprecise) even if many of the coarse counts may in practice not exceed the threshold. By
employing a privacy filter, we can instead fix a budget e,,dger that we want to allocate to this
analysis task and try to run the analysis so long as the filter has enough budget left. If only a few of
the data entries exceed T, this allows to count many more predicates than the conservative analysis
without a privacy filter.

In Clutch-DP, we can prove that adaptive_count is epydget-dp from the specification (8) because f
and g meet the precondition of try_run, as they consume a budget of ecoarse and eprecise respectively.

4.3 Caching Techniques for DP

Interactive analysis with data-dependent queries is common in real-world workloads for DP. This
poses a challenge for DP frameworks because it makes it impossible to statically avoid repeated
evaluation of certain queries, say, by refactoring code that requires the same result, and hence
repeated queries inflate the privacy cost unnecessarily. This problem can be solved with a query
cache that memoizes the results of a query on first execution and reuses this result upon repetition.
One would hope that reusing a noisy result in a repeated query should be “for free” and consume no
privacy budget. However, the privacy analysis of such a memoization method is subtle, because the
privacy cost of a query depends on the history of queries, which is highly non-local information.

let mk_query_cache add_noise db = let map_cache add_noise gs db =
let cache = Map.init () in let run_cache =
let run_cache q = mk_query_cache add_noise db in
match Map.get cache q with List.map run_cache gs

| Some x = x
| None = letx =add_noise qdbin
Map.set cache q x;
X
in run_cache
Fig. 11. Implementations of a cache and a client.

In this section, we reason about the privacy of the caching method introduced in Figure 3, which
we implement in RandML through the algorithm shown in Figure 11. Our formalization crucially
relies on our logic being able to support higher-order functions, local state, and a resource-based
representation of the privacy budget.

4.3.1 Cache spec: repeated queries are free. Upon initialization, mk_query_cache allocates a
mutable map cache and returns a closure run_cache that stores and looks up noisy query results
in cache. This is reflected in (10) as the existentially quantified iC(M_4che) resource. Initially, the
map M,,che is empty, but it can be updated via run_cache as we will see next.
{Adj(db,db")}
mk_query_cache add_noise db 3 mk_query_cache add_noise db’ (10)
{run_cache run_cache’. 3iC. iC(Map.empty) * spec-cached * spec-fresh}

where spec-fresh is defined as
{q ¢ dom(Mcache) * jx(g) * ['—(5) * (& 0)-iDP(add_noise q) * iC(A/Icache)}
Y Meache q - run_cache q 3 run_cache’ q (11)
{vo". v =0" % iC(Mcache [q—o])}
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and spec-cached is defined as

{q € dom(Meache) * iC(Meache) }
V Meaehe . run_cache q 3 run_cache’ g (12)
{U V. v=0 =% iC(Mcache) * Mcache[q] - U}

The specification (11) describes the behavior of (run_cache q) on a query that has not been memo-
ized yet. It requires that add_noise should indeed run q under (¢, §)-iDP and assumes ownership of
enough privacy credits to pay for this execution. Furthermore, it requires ownership of iC(Mcache)
for the current internal state of the cache. In the postcondition, we recover iC where M q.p, is
updated with the result of the noisy query.

The intuition that repeated queries should be free is formalized in (12): if q is in the cache then
no privacy credits are consumed for executing it under run_cache.

4.3.2 A cache client. A simple application is map_cache (Figure 11), which employs the cache to
run add_noise on a list of queries gs. We can prove that the privacy cost of map_cache is (ke, k&)
where (¢, §) is the privacy cost of the add_noise mechanism and k = |{q € gs}| is the number of
unique queries in gs. The proof of (13) follows directly from the abstract specification (10).

(¥Yq € gs. (¢, 6)-iDP(add_noise q)) — (ke, k8)-iDP(map_cache add_noise qgs) (13)
Without caching, the privacy cost would have to be multiplied by List.length(gs) instead of k.

5 Soundness: A Model of Clutch-DP

In this section we give an overview of the model behind Clutch-DP and its adequacy theorem. A
detailed account can be found in §A.
Our program logic is based around the notion of (¢, §)-approximate coupling [7, 37]:

DEFINITION 5.1. Let A, B be countable types, and ® C A X B a relation. Given two real-valued
parameters 0 < ¢, 8, we say that there is an (&, §)-approximate ®—coupling between distributions
11 D(A), yp: D(B) if, for any real-valued random variables f : A — [0,1],g : B — [0, 1] such that
V(a,b) € @, f(a) < g(b), the following holds : B, [ f] < exp(e) - By, [g] + 8. We denote the existence
of such a coupling by p; &%) 1y,

The model is similar in spirit to that of Approxis [21], which can be seen as based on a notion
of (0, §)-approximate coupling. There is a tight connection between couplings and DP: a function
f:DB — D(X) is (& d)-dp iff for any adjacent inputs b, b": DB, we have f b (=)0 fv.

With this definition in mind, we can now state the adequacy theorem of Clutch-DP.

THEOREM 5.2. Let f, f’ be two RandML functions and ®, ¥ : Val x Val — Prop. If
{O(w, W)« £5(8) = £ (o)} f w = f W' {¥}
holds in Clutch-DP then, for any initial states o, ¢’, we have exec(f w, o) y(&d) exec(f' w’,d’).

By instantiating ® with adjacency and ¥ with equality, we recover Theorem 3.2 as a corollary.

Internally, the Hoare quadruples are defined in terms of a primitive, unary notion of weakest
precondition (WP), where the right-hand side program is represented as a separation logic re-
source [17, 20, 21]. Validity of the WP is defined by guarded induction on the program execution,
establishing an approximate coupling at each step, and finally composing all the couplings into a
coupling for the full execution. Each program logic rule is then proven sound w.r.t. the definition of
the WP. In particular, all standard separation logic rules for the deterministic fragment of RandML
can be re-established. We refer the reader to the supplementary material for more details.
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Fig. 12. Comparison of DP systems. “Beyond comp.” = support for mechanisms whose DP goes beyond
composition laws (e.g., SVT, RNM).

6 Related Work

Types for DP. A wide range of type systems ensuring DP have been developed. Fuzz [35] and
its variants track function sensitivity via linear types and rely on metric composition to statically
ensure pure DP for a probabilistic A-calculus. DFuzz [18] integrated linear and dependent types to
improve sensitivity analysis. Fuzz€® [13] extends Fuzz with support for (¢, §)-DP. The two-level
type system of Adaptive Fuzz [41] enhances static typing by integrating a trusted privacy filter into
the language runtime. The system allows programming with adaptive composition by dynamically
type-checking programs during execution and composing them according to the privacy filter. In
Clutch-DP, privacy filters are just regular programs that can be verified in their own right.

Duet [33] is a linear type system supporting various notions of DP by a separation of the language
into a sensitivity and a privacy layer which interact through bespoke composition laws that restrict
rescaling, which limits the kinds of higher-order functions that can be type-checked. Jazz [40]
lifts some of these restrictions by introducing latent contextual effect types. HOARe? [8] encodes
sensitivity and privacy information in relational refinement types for a pure calculus.

The DPella system [27], Solo [1], and Spar [28] leverage extensions to Haskell’s type system to
encode sensitivity (or distance) information via dependent types instead of linear types.

None of these systems support mutable state, or the verification of programs whose privacy
requires advanced budget management instead of following directly from composition laws.

LightDP [42] employs a dependent relational type system to bound distances in program variables.
With SMT-backed type inference, LightDP can verify DP for some mechanisms beyond composition
laws (e.g., non-interactive SVT), but the method does not extend to advanced language features or
flexible privacy budget analysis as used, e.g., in Report Noisy Max.

Logics for DP. The apRHL(+) program logics [6, 7, 10] can prove (¢, §)-DP for programs written
in a first-order while-language. Reasoning about basic mechanisms is well supported in apRHL, and
it has been applied to advanced mechanisms such as SVT. Verification of interactive DP is supported
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through a specialized rule for adversaries that can interact with mechanisms through fixed patterns.
In apRHL, adversaries are programs subject to a number of side-conditions; in contrast, our model
of interactive computations via higher-order functions does not come with syntactic restrictions
and can be composed modularly. For instance, we can recover the apRHL model of SVT used by
Barthe et al. [7, Fig. 1] through our streaming SVT (§4.1.3) by instantiating the stream of queries
QS with the adversary A of loc. cit. The privacy budget in apRHL is handled via a grading on
judgments which offers less flexibility compared to Clutch-DP’s privacy credits.

A variant of the EasyCrypt prover supports apRHL but the implementation of the apRHL rules
are part of the trusted code base, whereas the rules of Clutch-DP are proven sound in a proof
assistant. During the development of our case studies we found a bug in the Laplace sampling
rule of EasyCrypt® which has accidentally been exploited in a user-contributed privacy proof of
Report Noisy Max. Our foundational approach would have prevented us from introducing such an
erroneous rule. Proof search for coupling-based proofs of DP for first-order programs was studied
in [4]. Their definition of choice couplings inspired our LAPLACE-CHOICE rule.

Fuzzi [43] integrates an apRHL-style logic with a Fuzz-inspired sensitivity- and privacy-logic;
working at the intersection of the languages of the two systems, it does not support mutable state
or higher-order functions.

The HO-RPL logic extends the ideas from apRHL to support higher-order functions and continu-
ous distributions by giving a denotational semantics of programs in Quasi-Borel Spaces, but it is
not known how to extend this approach to other language features that our challenge problems
require such as dynamic allocation or higher-order store.

The Isabelle/HOL formalization of DP [39] develops the mathematical theory of DP in the
continuous setting. Working directly in the semantics, they prove privacy of Report Noisy Max,
stating however that “the formal proof is quite long”. Our proof of RNM is about six times shorter,
demonstrating the benefits of working in a program logic.

The SampCert project [14] formalized DP in the Lean prover by interpreting a shallow embedding
of a while-like language in the same kind of denotational semantics that apRHL is based on. Rather
than assuming that the language has a primitive that samples from the Laplacian, SampCert proves
that an efficient implementation of a sampler realizes the Laplace distribution. Their approach is
particularly well-suited to carrying out the low-level probabilistic reasoning and focuses less on
building modular systems. SampCert formalizes non-interactive variants of AT and SVT.

Separation logic. Several probabilistic separation logics exist, but only Clutch-DP supports
reasoning about DP. The Approxis [21] relational separation logic supports reasoning about approx-
imate program equivalence. Their notion of @-approximate equivalence amounts to (0, «)-dp in
our setting, i.e., our additive privacy credits correspond to their “error credits”. Approxis can prove
cryptographic security or correctness of samplers but cannot express DP. Bluebell [5] encodes
coupling-based relational reasoning via a conditioning modality, but only supports exact program
equivalences for terminating first-order programs.

7 Conclusion and Future Work

We have developed Clutch-DP, a probabilistic higher-order separation logic for DP. To demonstrate
how Clutch-DP enables modular verification of DP libraries, we addressed three representative
challenges and verified a wide range of case studies involving interactive mechanisms, privacy
filters, and memoization. Clutch-DP is proven sound as a library for Iris in the Rocq Prover.

In future work, we would like to extend Clutch-DP to model concurrency to reason about local DP
in a distributed setting. We would also like to integrate verified sampling mechanisms as developed

®We have disclosed the bug to the EasyCrypt team.



Modular Verification of Differential Privacy in Probabilistic Higher-Order Separation Logic (including Appendix) 21

by, e.g., de Medeiros et al. [14], to provide end-to-end DP guarantees by adapting the techniques of
Aguirre et al. [3] to verify rejection samplers to the relational setting. Finally, it would be interesting
to integrate other divergences [38] with relational separation logics to model, e.g., Rényi-DP.

Data Availability Statement

The Rocq formalization accompanying this work is available on GitHub at github.com/logsem/clutch.
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A Semantic Model

In this section we dive into the model behind Clutch-DP and show how our adequacy theorem is
proven. We begin by recalling some notions of probability theory.

A.1 Probability Theory and Probabilistic Couplings

Given a countable set A, a probability (sub-)distribution p over A is a function y: A — [0, 1] such
that ), p(a) < 1. We use the notation D(A) to denote the set of distributions over A. Distributions
have a well-known monadic structure, see e.g. [21]. We use ret a and p >= f to denote the return
and bind operations. Given a random variable f: A — [0, 1], its expected value is given by
Bulf]2 3, 1(a)f ()

We recall the notion of (¢, §)-approximate coupling, due to [7, 37]:

DEFINITION A.1. Let A, B be countable types, and ® C A X B a relation. Given two real-valued
parameters 0 < ¢, 0, we say that there is an (¢, §)-approximate ®—coupling between distributions
p1: D(A), ua: D(B) if, for any real-valued random variables f : A — [0,1],g : B — [0, 1] such that
Y(a,b) € ®, fa < gb, the following holds : E,, [ f] < exp(e) - E,,[g] + 6. We denote the existence of
such a coupling by iy ®&0) 1y,

The reason we are interested in approximate couplings is that there is a tight connection between
them and DP. Indeed, when instantiating ® to be the equality relation we have the following result:

THEOREM A.2. Let f : DB — D(X) be a function over databases. Then, f is (¢, §)-dp iff for any
inputs b, b’ : DB such that dpg (b, b) <’ 1, we have f b (=)%) b’

Approximate couplings are the key component of our relational program logic. One can think of
111, jt2 as two randomized computations, ® as a relational postcondition we wish to establish and
(¢,0) as a privacy budget that we can spend in order to prove the postcondition. We will see later
in the section how to interpret ¢ and § as separation logic resources, but for now notice that they
have an affine flavor to them, since they satisfy the following monotonicity lemma:

LEMMA A.3. Let jiy: D(A), po: D(B), ® C A X B. Assume that ji; @& p1,. Then, for all ', 8, @'
such thate < ¢, 5 < &', ® C @', we also have yy ® %) pi,.

In order to build a logic around couplings, we need them to be able to compose them along the
operations of the underlying distribution monad. The following results are well-known:

THEOREM A.4. The distribution monad operations lift to couplings, in the sense that:

e Leta: Ab: Band ® C A X B such that (a,b) € ®. Thenreta ®&9) retp.
o Letpii: D(A),p2: D(B),f: A— D(A'),g: B— D(B')and® C AxX B, Y C A’ X B such
that piy %) 1, and, for all (a,b) € ®, fa W% gb. Then, (j; >= f) ¥E+0+5) (1, = g).

In order to support a more flexible form of composition, such as in our Above Threshold example
(§4.1.1), we introduce a more general version of the composition lemma above, where the choice of
coupling in the continuation can depend on the result of the first step. This is heavily inspired by
choice couplings [7], but it really shines in our setting, since we have a resourceful treatment of
the privacy budget.

THEOREM A.5. Let py: D(A), pa: D(B),f: A — D(A’),g: B —» D(B’). Assume we have a
predicate = C A, and ®;,, C AX B, ¥ C A’ X B', with ®;, ®, disjoint in the sense that, Va,a’,b.a €
EAd ¢E > ((a,b) ¢ ®1V (a',b) ¢ Oy). Assume further that:

° (I)l(flyfsl) Lo
o @, (e2:02) o
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e Foralla,b such thata € = and (a,b) € ¥4, fa p(en8)) gb.
e Foralla,b such thata ¢ Z and (a,b) € @, fa p(:67) gb.

Then, (1 >= f) W9 (11, >=g), where ¢ = max(e; + €1, + &) and § = §; + & + max(9], 5;)

The idea behind the statement above is that it allows us to use two different couplings for the
first step: one over ®; and another over ®,. Then get a sample a from p;, and we choose which of
the couplings to use depending on whether a lands in =, and we continue the rest of the execution.
In particular, this allows us to optimize the use of the ¢ component of the privacy budget, since we
can set the amount to use in each of the variants and only spend what we need. In the case of the §
component, we can also set the optimal amount for the continuation, but not for the first step, both
&1 and &, need to be spent no matter the result.

A.2 Hoare Quadruples and the Weakest Precondition

Hoare Quadruples are not a primitive notion in Clutch-DP. Instead, they are defined in terms of a
weakest precondition predicate (WP). This is a unary predicate about the left-hand side program.
The right-hand program e, is tracked by a resource spec(eg).

{P}eze {vv .0} £ O(P — JK.spec(K[e']) — wp e {v.T0 . spec(K[0v']) * Q(v,0")})

to state that e refines e’ and that if e terminates with v then e’ terminates with v’ and the postcon-
dition P is satisfied.

The WP, whose definition is shown below, couples the execution of the implementation program
together with the execution of the specification program and ensures that the postcondition holds
at the end. The construction is similar to the one presented in Approxis [21], but adapted to our
more general notion of coupling. Crucially, we also employ an updated program coupling modality
to support choice coupling composition at the level of program steps. Notice that this definition
tracks the two components of the error, both ¢ and §. As usual, the weakest precondition is a
predicate defined as a guarded fixpoint, whose existence is ensured by the presence of the later
modality (>) in front of the recursive occurrence of the weakest precondition:

wp . e {®} £ Yoy, py, €1, 81. S(o1, p1, €1, 81) —*
s seplo S(endr) P{ {02, Pé, €2, 0.
(e1 €Val x = . S(02, ph, €2,82) * P(e1)) V
(e1 & Val = pepl (e1,02) 3(ep5,) P3 {€2. 03, p5, €3, 3.
> scpl 03 Z(es,0,) P3 {04 P4 €4, 84 o= S(04, Pl €4, 64) * wp €2 {®}}})}

The weakest precondition requires us to own the state interpretation S(oy, p1, €1, 61), which is
a predicate that maps the different resources in Clutch-DP (the physical state of the implemen-
tation program, the configuration of the specification program, and the privacy budget) to their
corresponding resource algebras. We then have to prove two different cases, depending on whether
the current program e is or is not a value. In the former case, we can just give back the state
interpretation and prove ®. Otherwise, we have to prove a property about the distribution that
results after taking one program step. This is phrased in terms of the composition of two modalities,
the specification coupling modality and the program coupling modality.

The specification coupling modality, initially introduced in Approxis, accounts for logical updates
to the current state of the execution. In particular, it allows for the specification program to take
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physical steps. It is defined as and inductive predicate given by the following rules:

SPEC-COUPL-RET

®(o, p’, 6, 6)
scplo 3(es) p' {D}

SPEC-COUPL-BIND
py RO (1! 5= 1 o}, step, (e, 03)) e+ <e 01 +6,<6
erasable(py, o1) erasable(y], o7) V(02 p3) € R. = scpl oz 3(e5,) 5 (P}

scpl o1 Z(es) (€1, 07) {@}

For the purpose of this work, the notion of erasability can be ignored, this is used to support
presampling tapes [20]. By the sPEC-couPL-RET rule, if the current implementation and specification
programs, and error budget satisfy ®, we can immediately conclude scpl o 3(.,5) p” {®}. The spEc-
CcOoUPL-BIND considers the recursive case. We can split our current credit budget ¢, § into &1 +¢&3, 61 +52
and use ¢, §; to take a number n of steps on the specification program under an approximate
coupling that satisfies an intermediate relation R. Then from (o3, p;) € R, we continue to recursively
stablish scpl 02 $(¢,.5,) P, 1P}, With our remaining credit budget &, 6.

The program coupling modality couples exactly one physical step of the left-hand side program
with an arbitrary number of physical steps n of right-hand side program. In addition, the right-
hand side program is also allowed to execute an erasable update before its physical steps. Choice
couplings are baked into the definition of the program coupling modality, thus the intermediate pair
of states that the program reach can satisfy one of either R; or R, before executing the continuation.
The amount of error credits that is available for the continuation may also depend on this choice.

PROG-COUPL-BIND
step(ey, 01) R+ (i >= 1 0. step,(el. 03)) step(ey, 01) R, %) (1) =1 0. step,(el, 03))
red(ey, o1) e1t+e<e et <e 81+ 6+ max(8; +85) <6 erasable(y}, o)

V((ez, 02), (€5, 03)). ((P(ez,02) A Ri((e2, 02), (€5,07))) = P(ez, 02, €5, 03, €1, 87) ) *
((=P(ez, 02) A Ry((e2, 02), (€5, 03))) = P(ez, 02, €5, 05, €5, 5))

pepl (e1,01) Z(e5) (€1, 07) {®}

A.3  An Adequacy Theorem

With these definitions in hand, we can state the adequacy theorem of Clutch-DP, now in full
generality:

THEOREM A.6. Lete, e’ be two RandML functions and ¥ : ValxVal — Prop a proposition over (final)
values. If spec(e’) = £%(¢) * $7(8) — wp e {v,0".spec(v’) * ¥} holds in Clutch-DP, then, for any
initial states o, o’, we have exec(e, o) p(ed) exec(e’, 0”).

The proof is done by induction on the execution of the left-hand side program, by proving the
lemma below, and finally taking a limit:

LEMMA A.7. Lete, e’ be two RandML functions and ¥ : Val X Val — Prop a proposition over (final)
values. If spec(e’) = £*(¢) = #7(5) — wp e {v,v".spec(e’) = ¥} holds in Clutch-DP, then, for any
n € N and any initial states o, o', we have exec, (e, o) (&%) exec(e’, o).

The key part of the proof happens when the program on the left is not a value, and has to take a
step. This requires two applications of STATE-COUPL-BIND and one application of PROG-COUPL-BIND
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to establish the specification coupling in the non-value case of the WP. In particular, PROG-coUPL-
BIND allows us to advance the program on the left exactly one step, which lets us use our inductive
hypothesis about exec, (e, —) to reason about execy+1 (e, 7).

B Case Study: Report Noisy Max

The Report Noisy Max mechanism (RNM) is a DP mechanism that receives a list of N 1-sensitive
queries, runs them privately by adding noise sampled from Laplace (g/2), and returns the index
of the query with the highest value. While a naive analysis of the algorithm using composition
theorems would show that the algorithm is (N - ¢/2)-dp, the only information that is released is
the index of the highest query. All other (noisy) results are discarded. This suggests that a better
analysis should be possible. In fact, one can prove that RNM is e-dp, in other words, its privacy cost
is completely independent of the number of queries.

We now show how this is proven in Clutch-DP. The implementation of RNM in RandML can be
seen in Figure 13, where qgs is a list of queries, and gs[i] returns its i-th element. The algorithm
simply iterates over the list of queries, while keeping track of the highest result so far (maxA) as
well as its index (maxl), and returns maxl at the end.

let RNMegs N db=
let maxl = ref (=1) in
let maxA = ref (0) in
let recrnmi =
if i = N then ! maxl
else let a = Laplace (g/2) (gs[i] db) in
ifi=01] (!maxA) < athen
maxA « a;
max| « i;
else ();
rnm (i + 1)
inrnm 0
Fig. 13. The Report Noisy Max mechanism

We can prove that RNM satisfies the following specification:
{#*(e) * Adj(db,db") = Vi. 1-sens(qs[i])}
¥ gs N db db’j. RNM e qs N db 3 RNM e gs N db’ (14)
{ov".v=j = o =j}
The precondition states that we own a privacy budget of £* (¢), that the databases we are considering
are adjacent, and that all queries in gs are 1-sensitive. This quadruple is stated in a pointwise manner:
we show that for every possible outcome j if it is the case that the left-hand program returns j,

then so does the right-hand program. From this specification, by applying the general version of
the adequacy theorem (Theorem A.6), we can recover that RNM is externally e-dp.
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