Building Extensible Program Logics through Effect Handlers

ZICHEN ZHANG, New York University, USA
SIMON ODDERSHEDE GREGERSEN, New York University, USA
JOSEPH TASSAROTTI, New York University, USA

One strategy for reasoning about programs that have certain kinds of effects is to use program logics that
provide specialized rules for reasoning about these effects. However, developing program logics requires
skills that are distinct from those needed for using program logics, making the development of new logics
challenging and less accessible. Moreover, when developing new logics, it can be difficult to reuse components
from prior logics or combine support for different effects.

In this paper, we propose an approach for building extensible program logics based on effect handlers. Our
starting point is an expressive program logic for reasoning about programs written in a pure, sequential lan-
guage with support for effect handlers. Within this language, we implement handlers that model concurrency,
distributed execution, and crash-recovery behavior. Then, by proving properties about these handlers, we
extend the program logic and derive expressive rules for reasoning about these effects. In some cases, this
approach leads to stronger reasoning rules than those found in prior program logics targeting these features.

In addition, we develop a relational logic for proving contextual refinements between programs using
effects. As with unary reasoning, handlers enable this relational logic to be developed in an extensible way.

1 Introduction

Program logics have proven to be a powerful tool for program verification. As a result, a variety
of program logics have been developed for challenging program features, including pointers [43],
concurrency [27, 38, 39], weak memory [16, 29, 31, 35, 52, 53], distributed execution [30, 44, 57],
crash recovery [12-14, 37, 42], and randomness [2, 3, 5-8, 24, 48], among others.

Traditionally, a program logic is developed by proving that a collection of reasoning rules is
sound with respect to an operational or denotational semantics for a language. However, following
this traditional approach is challenging for several reasons. First, the development of program
logics requires skills that are distinct from those needed for using program logics, making the
development of new logics less accessible. Second, when developing new logics, it can be difficult
to reuse components or port a particular feature from a different logic. In reality, many important
computer systems combine many of the features described in the previous paragraph, yet developing
logics that provide support for such combinations of features requires significant work.

Recently, Vistrup et al. [56] proposed an alternative approach to developing program logics
that addresses the re-usability problem. Starting from a minimal, pure lambda calculus, they
incrementally add effects to this language by giving a denotational semantics in terms of ITrees [59].
On the logic side, one gives rules that logically “interpret” or “handle” the events in the generated
ITree. The soundness of the logic is established in a modular way by relating these logical handlers
for events in the ITree to an interpretation function that “executes” the events. While this approach
addresses the problem of re-usability, it does not address the first accessibility issue: it requires
understanding the formalism of ITrees and their denotation, and the adequacy proofs require a form
of reasoning that is different from the task of using the program logic to reason about programs.
Moreover, it is unclear how to use ITrees to account for certain types of program effects or logic
features, such as prophecy variables.

This paper advocates for an alternative approach to developing program logics by using effect
handlers [40, 41] to model all program effects. Effect handlers are a language feature that enable
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programmers to define custom effects in a modular and compositional way. Moreover, recent
work has shown how to develop program logics for reasoning about effect handlers [17-20]. For
example, using these logics, it is possible to verify an effect handler that implements a mutable
state effect and derive a specification that resembles the usual separation logic rules for reasoning
about pointers. As a result, reasoning about a client program that uses this state effect handler
looks just like doing a standard separation logic proof about a program that uses built-in primitive
state. However, prior program logics for effect handlers have considered a setting where effect
handlers are added on top of a language that already has various other forms of primitive effects
built in, such as mutable references and concurrency. This makes sense for verifying examples that
involve a subtle interaction between primitive effects and effect handlers, but it means that the
soundness proofs of these logics combine the complexity of primitive effects and effect handlers.

In this work, we instead use effect handlers to bootstrap an expressive program logic for a
range of effects. Our starting point is a minimal core effect handler language called FicusLang that
has just two primitive effects: non-deterministic choice and recording an action to a trace. For
reasoning about programs written in FicusLang, we develop Ficus, a separation logic for effect
handlers that is an adaptation of an earlier logic called Hazel [18]. Using FicusLang, we then
implement handlers to model mutable state, shared-memory concurrency, distributed execution
over unreliable networks, and crash-recovery with durable state. For each effect, we apply Ficus
to verify the handler implementations and obtain proof rules that are analogous to the reasoning
principles derived in prior specialized program logics for these effects.

The handler-based approach even allows us to derive stronger proof rules than prior work.
There are two main reasons. First, with the handler-based approach, we can build up effects in a
hierarchical way, using earlier effects in the definition of handlers for later effects. Then, when
verifying those later effects, we can use the proof rules from the earlier effects. For example, we show
in §5 how to derive local prophecy variables [1, 28] from a simpler global prophecy by implementing
local prophecy variables as an effect handler. Later, when implementing the handlers for crashes
and recovery in §6, we attach prophecy variables to non-deterministic choices made during crashes,
which allows client proofs to reason about when crashes will occur.

A second source of stronger proof rules arises from using effect handlers to implement non-
standard versions of effects that are easier to reason about. For example, our handler for concurrency
generates fewer interleavings than a standard operational semantics for concurrency. As a result,
the “invariant-opening” rule that we obtain for this handler is stronger than the standard rule from
most concurrent separation logics (CSLs). To justify the use of these non-standard semantics, we
must prove that they are equivalent in an appropriate sense to the standard semantics. To do so,
we develop a new relational logic for effect handlers called Banyan.

Contributions. To summarize, our work makes the following contributions:

e We extend Hazel [18] to develop Ficus, an extensible unary program logic based on effect
handlers (§2). Ficus uses protocols to decompose reasoning about handlers and client code
using handlers, and adds support for an extensible notion of worlds to share resources
between client code (§3).

e We develop a relational logic, Banyan, for proving contextual refinement in the presence
of effect handlers (§4). Banyan adapts Ficus protocols to the relational setting, similarly
allowing for reuse and extensibility.

e As case studies, we show how to reconstruct and extend features from existing program
logics using our effect handler approach. This includes: (1) A derivation of local prophecy
variables out of global prophecies, along with an approach to implicitly make prophecies
without annotating a program with prophecy operations; (2) A logic for crash-recovery
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vi=()|recfx.e|---|cont N

ex=v|x|ee|---|doe|§(N)[v]| (tryewithok = e|retov=¢e)|pick|observee
K:=[]|eK|Kov]|---|doK | (tryKwithok= e|retv=c¢e)
N:=[]|eN|No|---|doN

Fig. 1. Syntax of values v, expressions e, evaluation contexts K, and neutral evaluation contexts N.

reasoning with asynchronous durable storage that recovers the features of Perennial [12],
but with a simpler model, and novel support for crash-aware prophecy variables; (3) A logic
for distributed systems with IronFleet-style [25] atomic blocks.

Our work is mechanized in the Iris separation logic framework [27] and the Rocq Prover. Our
formalization is available in the supplementary material.

2 Program Logics by Effect Handlers

This section provides an overview of how to build up a program logic using effect handlers. After
introducing FicusLang, we describe the core features of Ficus, and use them to develop proof rules
for reasoning about shared-memory concurrency. An inference rule with premises Py, ..., P, and
conclusion Q should be read as a separation logic entailment of the form P, * - -- % P, + Q.

2.1 The FicusLang Calculus

FicusLang is a call-by-value ML-style lambda calculus with effect handlers. The syntax of FicusLang
is shown in Figure 1. The expression do v raises an effect with value v, which will later be handled
by the closest enclosing effect handler. Expression try ey with v; k = e; | ret v, = e; installs a
shallow effect handler for e: it evaluates e until either e, raises an effect or becomes a value. For the
first case, the handler will have access to the value v; raised by the effect and a continuation k that
allows the handler to resume e, from the point the effect was raised. For the second case, the handler
will obtain the result of e, a value v,. This type of handler is called a shallow handler because it
will disappear in both cases, and the interpreter must reinstall the handler if the expression ey may
raise effects multiple times.! Continuations are used by applying them like functions.

In addition to effect handlers, FicusLang has two built-in primitive effects. The first is the pick
expression, which non-deterministically evaluates to an arbitrary integer. The second is observe v,
which performs a labeled transition with the label given by the value v. These observe statements
are used as a form of ghost code and underlie our support for prophecy variables as discussed in §5.

Figure 2 shows an example of a handler implementing a global state effect supporting read
and write operations. The handler uses a state-passing style. The recursive function go takes a
continuation k, a value r to pass to the continuation, and the current global state o. It runs the
continuation under a handler that expects raised effects to be pairs of the form (5, v), where 7 is a
tag indicating whether the operation is a read or write. Based on the tag, it recursively calls go
with the appropriate return value and updated state. If the tag does not match read or write, it
re-raises the effect to allow composition with another handler for other effects.

2.2 Core Ficus Logic

To reason about programs written in FicusLang, we make use of Ficus, a separation logic built on
top of the Iris framework [27], adapted from the Hazel logic for effect handlers [18]. This section
first presents the basic core of Ficus, which is essentially a subset of Hazel. Later sections will
describe additional generalizations that go beyond Hazel.

! Deep handlers, which are re-installed after an effect is raised, can be simulated with shallow handlers and recursion.
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runstate = Amain init. go main () init
where go £ recgokro.
try k r with
vk =matchowith
(read,()) > gokoo
| (write,y) > gok Oy
| (n,0) = gok (do (n,0)) o
|retv=v
Fig. 2. Handler for a global state effect.
Ewp-VALUE Ewp-Do Ewp-MonNoO
®(v) ¥ (v, ) YOV  VYod() =+ (v) ewpe(¥){d}
ewp v (¥) {®} ewp do v (¥) {®} ewp e (¥') {'}
EwpP-FRAME Ewp-PURE Ewp-BIND
R ewpe(¥){d} ewpe(¥){®} e >"e ewp e (¥) {v. ewp N[ov] (¥) {®}}
ewp e (¥) {v. Rx®(v)} ewp e’ (¥) {®} ewp Nle] (¥) {®}

Fig. 3. Selected reasoning rules about the effect weakest precondition ewp e (¥) {®}.

Ficus uses a weakest precondition assertion of the form ewp e (¥) {®} for reasoning about
programs. In this assertion, e is a program expression, ® is a postcondition, and ¥ is a protocol that
describes the specifications for effect handlers that are active as e executes. This assertion says that
if e executes in an environment with handlers satisfying ¥, then evaluating e will not get stuck,
and if e terminates with value v, then the assertion ®(v) will hold. More concretely, the protocol ¥
is a predicate of type Val — (Val — iProp) — iProp, where the first argument is the value raised
with an effect, and the second argument is the postcondition at the time the effect was raised.
Throughout this paper, we require all protocols to be monotonic [17]. A protocol ¥ is monotonic if
(Yw. ®(w) =+ @’ (w)) + ¥(v, D) + ¥(v,d’) for all v, @, and &’. This essentially enforces a one-shot
continuation discipline in the logic which simplifies our presentation and suffices for our purposes.

Figure 3 lists a selection of reasoning rules for the ewp assertion. Most of these rules are similar
to standard weakest precondition rules in separation logics. The key rule for reasoning about effects
is Ewp-Do, which says that to raise value v, it suffices to show that the protocol holds for the value
v and the current postcondition &.

For example, for the state handler in Figure 2, we use the STATE protocol

READY (v, ®) £ Jx. v = (read, () = S¥(x) * (S (x) = ®(x))
WRITEY (v, ®) £ 3x,y. 0 = (write,y) = S (x) = (S¥(y) = D(()))
STATE (v, ®) = READY (v, ®) V WRITEY (0, )

where SY(x) is a predicate that uses a piece of ghost state with the name y to assert that the current
value of the global state ¢ is x. The first component of the protocol is READ, which says that when
the effect tag is read, then the client must show S¥(x) for some x, in which case the protocol gives
back S (x) for proving the postcondition ® instantiated with the value x, indicating that the return
value of the effect will be x. The second component is the WRITE protocol, which updates the given
SY predicate from value x to the value y being written and returns back the unit value. Finally,
STATE is the disjunction of these two protocols.
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By applying Ewp-Do, we obtain the following derived rules for reasoning with this protocol:

EwP-READ Ewp-WRITE

¥ (x) S (x)
ewp do (read, ()) (STATEY) {v.v = x} ewp do (write,y) (STATEY) {v.0 = () * S¥ ()}

Installing Handlers. So far, we have seen how a client can reason about effects when an
appropriate protocol is part of the ewp assertion. Protocols are added to the ewp when a handler is
installed using the Ewp-TRy rule shown below. Using the Ficus approach, we think of the language
and logic as being extended to support new effects by adding handlers, so applying this rule forms
the core proof obligation of a developer trying to extend the program logic.

Ewp-Try
(Voz. @(03) ~+ ewp ez (') {®'}) A

ewp e (¥) {®}  (Yor, ki. ¥(v1, Aw. ewp kg w (¥) {D}) - ewp e; (V') {D'})
ewp tryewitho, k1 = e; | reto; = e; (¥') {9}

Specifically, in the Ewp-TRy rule, we start with a protocol ¥, and end up with a protocol ¥
when reasoning about the expression e that runs with the new handler available. This rule has two
premises. The first premise requires proving an ewp about e with the new protocol ¥. As a result,
this premise will be proved by a client who may now reason as if e has access to the new effects.

Meanwhile, the second premise makes up the proof obligation that justifies extending the logic
with this new protocol. This premise is a logical conjunction with two parts. The first conjunct
is for the case where e evaluates to a value without raising an effect and requires showing that
e’s postcondition ® implies an ewp about the remaining expression e;. The second conjunct is for
the case where e raises an effect. Recall that when e raises an effect, from the client’s perspective
it must establish the protocol ¥. Conversely, that means that here in this proof rule, we get the
protocol ¥ instantiated with the value v; raised with the effect, and a predicate that captures a
specification for the continuation k;. From this, we must prove an ewp about the handler code e;
that will run. These two conjuncts are joined with A instead of * because only one of these two
outcomes will occur, so the rule does not require separate resources for each conjunct.

To apply this rule for the state handler from Figure 2, and thereby add the STATE protocol, we first
need to more carefully define the S¥ (x) assertion. To do so, we use the underlying Iris logic’s support
for defining ghost state using resource algebras [27]. In particular, we define it as the fragment copy
of a authoritative resource algebra: SY (x) £ [ox!”. Roughly speaking, this resource algebra comes
with two types of ghost resources: an authoritative copy |ex " and a fragment copy | ox !". When

these copies are combined together, they are guaranteed to agree, i.c., ex!’ x }lol./:}y Fx =y, and
they can be updated to an arbitrary value y, with the rule Li%}y * E;gj}y FEley 1}’/ * Ei}y, where B
is the basic update modality. The update modality is the primitive for manipulating ghost resources
in the Iris logic. The assertion B P says that we can update our ghost resources and obtain P. The
modality can be eliminated at any suitable time during program verification.

iiiii ‘ "oinit!” at a fresh ghost location y, where

passes the fragment copy [F&Tniiﬂy, which is §¥ (init), to the client. Whenever the client raises an

effect, it must show the value satisfies STATE?, which is then passed to the handler code. The
handler proof uses the S¥(x) that is included in STATEY and combines it with its corresponding
authoritative copy of the ghost state to carry out the read or write. Note that the handler recursively
calls go, thereby re-installing the handler and running the continuation. To reason about this

recursion, we use Lob induction from the underlying Iris logic [27]. Altogether, we obtain the
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runconc = Amain. go {|(main, (), M)}
where go = rec go pool.
let ((k,r,t), pool) := choose pool in
try k rwith

vk = matchowith
(fork,e) = go ({/(e, 0, C), (k, (), t) [} W pool)

| (n,0) = go ({{(k,do (n,0),1)[} & pool)
| retv=if t = M* theno

else go ({{((A_.0), (), ™)} @ pool)

Fig. 4. A handler for concurrency.

following derived rules for go and run, starting from a base protocol L defined by L (v, ®) = False.

Ewp-STATEGO Ewp-STATERUN
L‘,UJY ewp k r (STATEY) {®} Vy. SY (init) -+ ewp main () (STATEY) {®}
ewpgokro(L){d} ewp runsiace main init (L) {®}

Building a Hierarchy of Effects. The previous example showed how to go from no effects
(represented by protocol L) to the state effect (protocol STATEY). In practice, we want to accumulate
effects by nesting additional handlers within the handler for STATEY. To that end, as in Hazel, we
define a combinator @ on protocols by (¥; ®¥;) (v, ®) = ¥1(v, D) V ¥, (v, D). In other words, ¥; & ¥,
represents that a client may choose to use effects from either of ¥; or ¥;, or both. For example,
STATEY = READY @ WRITEY. Applying this operation to protocols results in a “larger” protocol.
This is formally captured by a preorder relation on protocols ¥; C ¥; @ ¥,. Intuitively, ¥; @ ¥,
is larger than ¥; because the former permits the client to raise more kinds of effects. Using the
Ewp-Mono rule, we can generalize EwP-READ and Ewp-WRITE accordingly: rather than requiring
exactly the protocol STATEY, we require that the protocol is some ¥ such that STATEY C V.

Similarly, the Ewp-STATEGO and EwP-STATERUN specifications for installing the handler do
not need to start from the base protocol L. Instead, they can start from an arbitrary protocol ¥,
and—so long as ¥ does not already handle the tags for read and write—the client code would
then operates with protocol ¥ @ STATEY. This enables the state handler to be composed with an
arbitrary context of previously installed handlers, allowing a logic developer to mixin rules for state
with other effects. A protocol is said to handle a set of tags T if ¥ (v, ®) + It,v.v = (t,0) At € T for
all v and ®. We write tags('¥) for the tags handled by ¥. For the state protocol we would require
read,write ¢ tags(¥). As another example of effects, we have implemented a handler for a heap
effect with dynamically allocatable higher-order references and the ability to locally read and write
from a given reference. This handler uses the STATE protocol to store a global map representing
the heap, and provides its own HEAP protocol for clients to use.

In this way, we compositionally build logical support for a collection of effects starting from the
L protocol, extending the core pure logic with support for these effects. This approach is grounded
in an adequacy theorem, which shows that the logic starting with the L protocol is sound.

THEOREM 2.1 (ADEQUACY, CORE Ficus). Let ¢ be a first-order predicate. If + ewp e (L) {¢} is
derivable, then executing e will not get stuck, and if e —* v then ¢(v) holds.

3 Concurrency and Extensible Worlds

In the effects we have seen so far, the handler always immediately returns control back to the client
that raised the effect. However, for other kinds of effects, the handler may instead pass control to
other client code. To reason about these kinds of handlers, we need to go beyond the core features
of Ficus inherited from Hazel. This section describes a new feature in Ficus called extensible worlds.



Building Extensible Program Logics through Effect Handlers 7

A key example of an effect where this mechanism is needed is preemptive concurrency. Figure 4
shows an implementation of a concurrency handler. It depends on a bag (a.k.a. multiset) library for
the thread pool pool. Each thread in pool is represented by a triple of (continuation, result of last
effect, thread type), where the thread type can be either a main thread M, a child thread C, or their
terminated variants M* and C*.

To execute one thread, the scheduler non-deterministically chooses one thread from pool, let it
execute for as many pure steps as it can until it raises an effect or terminates. If the thread raises a
fork effect, the scheduler will push both the new thread (e, (), C) and the old thread (k, (), t) to
the thread pool. If the thread raises another effect, the scheduler will forward the effect to an outer
handler by re-raising it, collect its result, and put the old thread back to the thread pool. Finally, if
the thread terminates, the scheduler will not immediately terminate the whole system but mark the
thread as terminated and put it back into pool. The scheduler will only exit when the main thread
terminates the second time, allowing other threads to continue executing for some number of steps
before the program exits.

Because the handler may pass control to other threads when an effect is raised, we now need to
reason about coordination between threads, which is what extensible worlds will enable.

Background: Iris Invariants and Fancy Updates. To motivate extensible worlds, let us first
recall how modern concurrent separation logics like Iris handle reasoning about interaction between
different threads. By default, CSL allows for local reasoning about different threads in a concurrent
system by dividing up state and resources into separate disjoint parts using separating conjunction,
with each thread having ownership of some portion of state. However, in some cases, threads need
to share ownership of state. To do so, CSLs make use of invariants. In Iris, an invariant assertion
N says that P is an invariant that holds between all program steps. The V' annotation is a name
given to this invariant. These assertions are duplicable, meaning that Ny N * N, which
allows each thread to have a copy of the assertion. When carrying out a proof about a thread, we
access the underlying assertion P by “opening” the invariant using the following rule:

Wer-INVACC
N NCE >P—*wp8\Ne{x. >P+®(x)} atomic(e)
Wpg € {@}

This rule allows us to prove the weakest precondition under the assumption that P holds (under
a later modality » [4, 11, 36], which we will ignore for now), so long as we re-establish P in the

postcondition of e. Here, e must be atomic, meaning that it reduces to a value in a single step, so
that by re-establishing P in the postcondition, we ensure that P will continue to hold before and
after each step. The mask parameter & is a set that tracks invariants that have not yet been opened.
The invariants in & are said to be closed or enabled, while all other invariants are open or disabled.

In fact, in Iris, Wp-INVACc is a derived rule. Iris uses a more primitive mechanism called a fancy
update modality of the form g B that encodes the process of opening and closing invariants.
Informally, the assertion g |5 ¢ P is an assertion stating that starting with all invariants in &; being
enabled, and then opening/closing invariants so as to end up with &; being enabled, it is possible
to prove P. Then the Wr-INvAcc rule can be derived from the following two rules.

Fupp-INvAcc N Wp-ATOMIC
NCE &P, Wpg, € {x. SZIE&CD(x)} atomic(e)
SES\N > P (> P S\NESTVUE) wpg e {®}

These rules are notationally heavy, but the rule on the left captures the process of opening an
invariant with the update modality. Starting from masks in &, we end up with masks in & \ N,
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and get » P. Additionally, we get that by supplying > P we can close the invariant, as represented
by the g A g True. Meanwhile, the rule on the right is what allows us to actually use the fancy
update modality to open invariants when reasoning about an atomic expression e, so long as the
the postcondition also includes a modality to close those same invariants.

Under the hood, the semantic model for this & =3 &, modality uses a mechanism called world
satisfaction. Essentially, the Iris definition of & B &, tracks the set of all of the enabled/disabled
invariants, and requires that for each enabled invariant, there are resources ensuring the invariant
holds. This bundle of resources is called a world.

Although the Iris invariant mechanism is very expressive and flexible, it has some limitations.
As a result, some prior projects have found it necessary to modify this notion of invariants. For
example, both Perennial [12] and Nola [34] have considered alternate forms of invariant assertions,
the former to encode invariants that govern behavior when a program crashes, and the latter to
reason about termination without needing the later modality. One key issue, for our purposes, is
that the notion of atomicity and the way invariants can be used in a rule like Wp-ATtowmic is closely
tied to the built-in preemptive concurrency in Iris. Instead, we want to allow handler implementers
to define a notion of invariant suitable for the kind of effect they are modeling.

Extensible Worlds. To achieve this kind of extensibility, Ficus does not fix a single baked-in
world in the interpretation of the fancy update. Instead, Ficus parameterizes the ewp and fancy
update modalities by a customizable notion of world. The full version of the Ficus ewp assertion
then has the form ewpy, ;. e (¥) {®}, where W} is an arbitrary Iris proposition representing the
world at the start of e’s execution, and W, is the world after e finishes. Meanwhile, the fancy update
modality becomes the world update modality \; By, , stating that the update is possible starting
from the world W; and ends up in the world W;. When the starting world W is the same as the
ending world, we simply write ewpy, e (¥) {®} and By .

Worlds are just normal Iris assertions, but it is nevertheless helpful to think of them more
abstractly. The combination of two worlds, written W1 & Wy, is defined as Wy * W,. We impose a
preorder C on worlds defined by W; & W, £ IW’. (W, 4+ W; & W’). Here, larger worlds have
more resources, and the minimal element L is the proposition True. Thus, with an update like
w,Pw, P, when W, © W, we are shifting to a smaller world, and give the difference betweeen W,
and W to the proof of P. Conversely, shifting to a larger world with W; E W, requires putting in
the difference between W; and W,

The rules we have seen previously for the ewp are generalized to account for worlds. A selection
of the generalized rules about ewp and the world update modality are shown in Figure 5. WupD-
INTRO introduces a world update y; By, P by showing that, given access to the initial world Wy, we
are able to prove P and the resulting world W, potentially performing ghost updates using the basic
update modality. WupD-ELiM eliminates a world update modality from an assumption, updating
the worlds on the goal accordingly. The Wupp-FrRAME allows for “framing out” an unnecessary
world W that occurs in both the starting and ending world.

Unlike the Iris Wp-Atowmic rule, which only allows masks to change around an atomic step, the
Ewp-WuUPpDPRE rule allows us to apply a world update that changes the starting world for any
expression, and Ewp-WupDPosT changes the corresponding ending world. The is allowed because,
unlike standard Iris, where the scheduler could preempt a thread at any point, in the effect handler
approach, control can only be transferred when an effect is raised. This means the starting world
does not need to be immediately restored. Instead, only when an effect is raised, must the world
be in an appropriate configuration, depending on whether the protocol ¥ requires it or not. In
Ewp-DoWupD, we start by shifting to the bottom world L, and then in the continuation passed to
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WupPD-INTRO WupD-ELIM WuprD-FRAME Ewp-VALUEWUPD
Wi = B (P*Wy) OF w,Pw,P w,Pw, Q w, Pw, ®(0)
w,Pw, P (w,Pw, D Fw,Pw,P  wewPwew? ewpy, w, v (V) {®}
Ewp-WUPDPRE Ewp-WupDPosT
W, sz EWDw, w, € (P) {2} EWDw, w, € (¥) {o. W, Ewg (0)}
ewpy, w, € (¥) {®} ewpy, w, € (¥) {®}
Ewp-DoWurp EwP-WORLDFRAME
w, B ¥ (0, (Ar. | By, (1)) ewpy, w, € (¥) {®}
ewpy, w, do v (¥) {®} eWpw, ew,w,ew € (V) {®}

Fig. 5. Selected reasoning rules for W, ISWZ and ewp with worlds.

the protocol ¥, we must restore back to W,. Finally, we can frame out an unused world in ewp
with Ewp-WORLDFRAME.

Recovering Iris Invariants. 1t is straightforward to recover Iris-style impredicative invariants
and the Iris fancy update modality in this more general world setting. As was described above,
the standard Iris definition fixes some particular world in its definition of fancy updates, and uses
ghost state to track the enabled invariants. Let us write Tok;(&) for the assertion that bundles the
world with the ghost state saying that mask & is enabled. Then we recover the following analogue
of the Fupp-INvAcc rule that we saw earlier.

WuprbD-INVACC
PN wNce

Tokl(a)'E’TokI(a\N) >Px (> P Tokl(a\N)E’TokI(a) True)

Moreover, by combining this rule with Ewp-WoRLDFRAME, we can support Iris invariants while
including other possible components in the world. As we will see in §6.1, this allows us to encode a
mechanism similar to Perennial’s crash borrows [49] while retaining standard Iris invariants.

Protocol for the Concurrency Handler. Now that we have an extensible mechanism for encod-
ing invariants that hold across threads, we turn to the protocol for the concurrency handler.

One challenge is that the concurrency handler in Figure 4 is generic, in the sense that it does not
know about the other effects that might be supported by outer handlers. It simply re-raises those
effects to the outer handler and potentially transfers control to another thread when the effect
returns. This means that the outer handlers could, say, implement shared memory or channel-based
message passing concurrency, or some combination thereof. Ideally, the protocol we develop should
similarly work for different kinds of outer effects.

To achieve this, the first ingredient is a protocol transformer ATOMY that lifts a protocol for
these outer effects into a concurrent protocol, where W is a world that describes shared resources
that can be accessed by different threads. To do this lifting, ATOM transforms ¥ to ensure that as
part of raising an effect governed by ¥, the thread must be able to restore the world W. In addition,
when the handler returns control back to a thread, it promises that W will hold. Formally, this is
captured through the following definition

ATOMw (¥) (0, @) = ¥ (v, Ar. | By wbE, ®(1))

The first | By is an obligation that the thread raising the effect has to be able establish W after
the effect completes. Meanwhile, because the second B, precedes the continuation ®(r), it
effectively gives back access to W before the continuation’s ® must be proved. In particular, if we
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instantiate W to be Tok;(T), where T is the full mask saying that all invariants are enabled, then
the above requires a thread to close all Iris invariants after the operation completes, just as in the
Iris rule Wp-Atomic.

To get the final protocol CONC for the concurrency handler, we combine ATOM with a protocol
FORK governing the fork effect. Because the forked thread will run in the scope of the concurrency
handler, FORK must have a recursive dependence on CONC.

CONCw(¥) = ATOMw (¥ @ FORKw (¥))
FORKw (¥) (v, ®) = Je.v = (fork,A_.e) * >ewpy, e (CONCw (¥)) {_. True} = ®(())
Here, the recursive occurrence of CONC in FORK occurs under the later modality », so that we
can define the result as a guarded fixed point [15, 21, 27]. The protocol for FORK requires showing

an appropriate ewp for the forked thread. Let us introduce a wrapper fork e 2 do (fork,A_.e).
We can re-derive the standard fork rule from Iris with this protocol.

Ewp-Fork
ewp,y, e (CONCw (¥)) {_. True}

ewp,y, fork e (CONCw (%)) {v.v = ()}

Finally, we have the specification for run,. from Figure 4, which installs the concurrency handler.

Ewp-CoNcRUN
fork ¢ tags(¥)  ewpy main () (CONCw(¥)) {®}

ewpyy, Muncene main (¥) {®}

In addition to the ability to create threads with fork, we can also model primitive atomic
instructions such as compare-and-swap (CAS) or fetch-and-add (FAA). To do so, we just need to
define an additional handler on top of the heap handler and associated protocol ATOMHEAP that
models these effects, much like the earlier HEAP protocol did. Combining HEAP and ATOMHEAP
together, and applying the concurrency handler we obtain a protocol that models all of the operations
one finds in the “standard” concurrent HeapLang distributed with Iris. Along the way, we have
obtained a stronger version of the invariant opening rule, allowing us to keep invariants open for
multiple pure steps.

However, a careful reader might object that what allowed us to derive this stronger invariant
opening rule is the fact that the concurrency handler only transfers control to another thread
when an effect is raised. In contrast, a standard operational semantics for preemptive concurrency
typically allows for preemption at every step, thereby generating more possible interleavings of
thread operations. Because our handler semantics for concurrency is not generating all of the
interleavings that the standard semantics would, one might wonder whether this handler is really
sound. Informally, the reason why the handler is sound in spite of this is that the intermediate pure
steps in-between effects are not observable to other threads to the system, thus inserting additional
preemption points would not change the possible outcomes of execution. In the next section, we
introduce a relational logic that will allow us to prove this claim rigorously.

4 Contextual Equivalence of Effectful Programs

In this section, we develop Banyan, a relational logic that allows us to prove correspondences
between the behavior of two effectful programs written in FicusLang. Just as with unary reasoning,
we compositionally derive relational reasoning rules for a number of effects. Using the resulting
logic, we define logical relations models that can prove contextual equivalences of programs
written in typed subsets of FicusLang. We apply this logical-relations model to prove that inserting
additional preemption points in our concurrency handler does not change the set of possible
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program behaviors, thus justifying the semantics from the previous section where preemption only
occurs when effects are raised.

4.1 Background: Embedding Relational Logics into Unary Logics

Banyan embeds relational reasoning into Ficus by encoding a second program as ghost state, as in
CaReSL [51]. Let us first recall how this ghost state encoding works in modern Iris-based separation
logics. For sequential programs, one first introduces two assertions: spec(e), which says that the
second program (which we call the “spec” program) is currently represented by the expression e;
and specCtx, which is an invariant that ensures that the spec(e) ghost state can only be updated
in ways that represent valid transitions in the language’s operational semantics. We further add
in assertions to represent the state of this spec program. For example a spec program points-to
assertion | —; v says that in the spec program, location / contains the value v, analogous to
the standard points-to assertion. Using these assertions, one derives rules that allow for the spec
program to be “executed” by applying ghost updates. To prove a relational property about two
programs e; and ey, it then suffices to derive a judgement of the form:

specCtx = spec(e) F wp ez {v2. Ju;. spec(vy) * p(v1,02)}

The soundness theorem of the encoding says that such a derivation implies that, for every execution
of e, terminating in a value v, there exists a terminating execution of e; ending in some value v,
such that ¢(v1, v2) holds. This basic approach can be generalized to account for concurrency as
well by having multiple spec program resources, one for each thread in the concurrent program.

Banyan adapts this style of relational reasoning with ghost programs to the setting of effect
handlers. A key challenge is that the usual ghost state encoding requires fixing the primitive effects
of the language ahead of time, and requires special treatment in the concurrent case to introduce
per-thread spec programs. In contrast, in Banyan these notions are derivable using protocols and
worlds, just as with unary reasoning.

4.2 Banyan: A Relational Logic for FicusLang
To enable extensibility, Banyan reasons about spec programs using an effect specification resource
assertion especy, e (W) that tracks a spec program e and a protocol ¥ in a world W. The program e
can be updated and progressed according to the operational semantics of FicusLang. For example,
especy, ((Ax. e) v) (¥) can be updated to especy, e[v/x] (¥) to reflect the execution of a beta
reduction as justified by EspEc-PURE shown below. As in Ficus, the protocol ¥ describes the
effect handlers that are active as e executes. That is, especy; N[do o] (¥) can be updated to
especy; N[w] (¥) such that ®(w) for some w by establishing ¥ (v, ®) as enabled by Espec-Do.
especy, Kle] (¥) x e —>" ¢’ F Pyespecy, K[e'] (¥) EsPEC-PURE
especy; N[do o] (¥) = ¥ (v, D) F BywIw. especy, N[w] (¥) * D(w) EspeEc-Do
Using these rules, we obtain derived rules for raising specific effects like global state, much as in
the unary case in §2, e.g.,
especy, (read, () (¥ @ STATEY) =S¥ (v) + Bwespecy, v (¥ @ STATEY) =S¥ (v)
especy, (write,w) (¥ @ STATEY) = S¥(v) F Bywespecy, () (¥ @ STATEY) = S¥(w)
Similarly, we have rules for installing handlers that capture these effects, such as
especy Munsiaie main init (¥) F Byw y. S (init) * especy, main () (¥ & STATEY).

The following adequacy theorem for Banyan holds, which requires that both the spec protocol
and the ewp protocol are L.
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THEOREM 4.1 (ADEQUACY, BANYAN). Let ¢ be a first-order relation. If
espec, ez (L) Fewp, e (L) {vl. Ju,. espec, vy (L) * ¢(vy, 02)}
and e; —* vy then there exists a value vy such that e; —* vy and ¢(vy,03).

The key to proving this adequacy theorem lies in coming up with a suitable definition of the
especy, e (¥) resource that validates the above rules.

Constructing the Effect Specification Resource. Much like the ewp assertion in Ficus, the
specification resource especy; e (¥) tracks the behavior of the program e under the assumption that
it executes in a program context satisfying the protocol ¥ and a logical world W. To define espec,
we first define a more general construction genspec which we will specialize to obtain espec. The
genspec assertion takes some abstract notion of a spec program and transforms it into a version
that has protocols and worlds for reasoning about effects. Specifically, let spec : Expr — iProp be
a predicate with the property that spec(e) + By spec(e’) when e —* e’. Given a choice of spec
predicate, the genspec assertion is defined as

genspecy, e (¥) = 3K. spec(K[e]) * handlery (¥)(K)

where the assertion handlery (¥)(K) captures that K is an evaluation context that realizes the
protocol ¥ indefinitely from the perspective of a program e running inside that context. Formally,
this is expressed using a greatest fixpoint:

handlery (¥) = gfp F, K.

Yo. spec(K[v]) -+ B spec(v)
A Vo, N,®.spec(K[§(N)[v]]) * ¥(v,®) =+ BwIK', w. spec(K'[N[w]]) * ®(w) = F(K’)

The two conjuncts of this definition require that

(1) if e is a value v then the context terminates with value v, and

(2) if e is a raised effect with continuation N and value o, ie, e = §(N)[v], and ¥ (v, D)
holds, then N is reinstated with some value w in a context K’ such that ®(w) and
handlery (¥)(K") holds co-recursively.

We can derive generic versions of the EspEc-PURE and Espec-Do rules for genspec, as well as
examples like the STATE protocol. Then we obtain espec and specialized versions of these rules
by instantiating genspec with spec(e) = ey —* e, where ¢ is the initial expression that the ghost
program starts as. Later, we will see how instantiating the definition with other choices of the base
specification resource allow us to reason about thread-local effects in concurrent execution.

4.3 Concurrency

To reason relationally about effects that do not immediately transfer control back to the raising
thread, we need to make use of extensible worlds, just as we did with the unary logic for concurrency.
However, in the relational case, our specification of concurrency has an additional requirement:
We want to be able to reason about each thread in the concurrent system individually. In the
encoding of specification programs in CaReSL described above in §4.1, this is achieved by having a
specification assertion per thread. Since each thread can raise effects and use other components of
a protocol, we need these per-thread resources to have access to the protocol, just as in espec.

To construct this per-thread effect specification resource, we again use the genspec construction.
To do so, we first need an underlying per-thread local specification resource spec! (e) that we will
use to instantiate the construction with. Here, the y parameter is a ghost name and t tracks whether
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the thread is either a main thread M or a child thread C. Additionally, we also need as specification
context world CTXY (W, ¥) that tracks the state of the concurrency handler.

CTXY (W, ¥) £ 3B, pool. isBag(B, pool) x| eB1" x especy, £0.,,. pool (¥)

In these definitions, we assert that there is some instance of the concurrency handler from Figure 4
installed, and we use ghost state to track the thread pool in the handler. Specifically, the thread pool is

tracked using ghost resources such that' eB "« oB’ " + B’ C Band eB|" + £y ¢(BWB') "+ oB I".

In the definition of spec! (e) we use this ghost state to assert that a triple of the form (k,r,t) is
stored in the pool, where k is the continuation representing the thread and r is the result of the last
effect. Additionally, we require that there is some way to run k r so that it will reach the expression
e. In other words, the thread currently in the pool may not yet be e, but when it is next scheduled
to run, it can execute to e. The CTXY (W, ¥) assertion enforces that in fact there is an underlying
espec running the concurrency handler providing the protocol ¥.

This thread-local specification resource fulfills the requirements needed to instantiate genspec, i.e.,
when e —* ¢’ then spec! (e) + B spec! (¢’). When updating spec’ (e) to spec) (¢’) in this deriva-
tion, instead of directly updating the underlying base effect specification resource in CTXY (W, ¥),
we instead accumulate the evidence that there exists a thread in the pool that can be evaluated to
the expression e’ when it is next scheduled.

Let espec{;’,t e (¥) be notation for the result of instantiating genspec with this assertion. This
thread-local effect specification resource gives us a unified mechanism to reason about both global
and thread-local effects. It supports analogues of the EspEc-PURE and Espec-Do rules. In addition,
we derive a rule for forking threads,

SpEC-FORK

especly N[fork e] (CONC!(¥)) CTX'(W,¥)CW

5 ;C ’
Bwespecly N[()] (CONCI(¥)) * especiiry, gy ¢ (CONCI(¥'))

where CONC{(¥) £ FORK{ ® ¥ and FORK{ (v, ®) 2 Je.0 = (fork,A_. ) * (specy,(e) + ().
Note that SPEc-Fork assumes that the specification context is in the current world. The specification
context is allocated when the concurrency handler is installed using the following rule.

Spec-CoNc-RuN
especy runconc main (¥)  fork ¢ tags(¥)

M .
BwJy. CTXY (W, ¥) espec(};TXy(w’\I,) main () (CONC!(¥9))

4.4 Logical Relation for Contextual Equivalence

Using Banyan, we next define a binary program-logic based logical relation [22] for proving con-
textual equivalence of programs written in typed subsets of FicusLang. Intuitively, an expression
e; is contextually equivalent to another expression e, at a type 7, written e; ~ ey : 7, if no well-
typed contexts C can distinguish them. In other words, the behavior of a client program remains
unchanged if we replace any occurrence of the sub-program e; with e;. Contextual equivalence is
defined as the symmetric interior of contextual refinement, denoted by e; <k ez: 7. Intuitively
refinement means that, for any context C the observable behavior of C[e;] is included in the
observable behavior of C[e;], relative to a closing handler context H. Formally, we define

ep <l e;:r £ VbeBool,C: 17— bool. H[C[e;]] =" b = H[C[e,]] =" b.

As a consequence, both the context and the programs may interact through effects.
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As an example, we consider a standard System-F-style type system © | T + e: 7 with impredica-
tive polymorphism, recursive types, and typing rules for CAS, FAA, and the fork operation (see,
e.g., Timany et al. [50] for a complete definition).

The logical relation is entirely standard and follows previous Iris-based models ([50]), except that
we define the expression interpretation using Banyan instantiated with the atomic heap instructions
and concurrency. The expression interpretation is

[z] (e1, e2) = VN, t. espec{,;,tS Nlez] (¥,)
ewpy 1 (¥1) {o1. Joy. especly Nloa] (%) * [7] (01, 02)}

where ¥, £ CONCY(¥"), ¥, £ CONCw (¥), W, = CTXY (L, ¥,), W = W, & Tok(T) for ¥ and ¥’
that describe the global stack of effects (state, heap, and atomic heap). The proof of the fundamental
theorem of logical relations is immediate from the existing proofs since all our rules for reasoning
about the atomic heap operations and concurrency are identical to the usual separation logic rules.

THEOREM 4.2 (FUNDAMENTAL). IfO |T'Fe: rthen® [T Fe S e: 1.
To prove soundness, we consider the closing handler context

Hcone = runstate (/1_ MUNheap (A_ FUNatomheap (/1_ MUNconc [])))
and use the handler rules, e.g., Ewp-ConcRuN and Spec-Conc-Run, and Theorem 4.1.

~Hcone

THEOREM 4.3 (SOUNDNESS). If- |- E ey < ep: 7 thene; Sy

ey: T.

Contextual Equivalence of Preemption. Using our logical relation, we prove that inserting
additional preemption points in concurrent programs does not change program behaviors. This
justifies the soundness of using a scheduler that only triggers preemption when effects are raised,
since it shows that additional preemption would not affect observable behavior. Formally, we
introduce an expression yield that triggers a preemption point by defining yield = fork (), i.e.,
a program that simply forks a thread that terminates immediately. By forking a thread, yield
transfers control to the scheduler, which may choose another thread to continue.

To justify that yield has no effect on the computation, we show that it is contextually equivalent
to the unit value, i.e, yield :gio'“c (): unit. The proof is an immediate consequence of the rules
Ewp-Fork and Spec-Fork for the left-to-right and right-to-left refinements, respectively. As a
corollary, for example, it then follows that e;; yield; e, :Zio“'c e1; ey : T for any well-typed e; and
ez2. As we will see in §7, a similar technique can be used to justify stronger atomicity reasoning
rules in the context of distributed execution.

5 Case Study: Prophecy Variables

When verifying certain concurrent programs in a forward-reasoning style, at some points in the
proof it is necessary to know how later operations will be non-deterministically ordered. Prophecy
variables [1, 28] are a logical mechanism that allows for “speculating” or “predicting” these future
outcomes during a proof. In Iris, these prophecy variables are ghost code, and a prover must
instrument a program to attach prophecy variables to operations whose values need to be predicted.
New prophecy variables are allocated using a command newproph, and then attached to a program
value using resolve. The proof rules for prophecy variables tell us at the time of allocation what
the future resolved value will be. Iris comes with an additional proof showing that these prophecy
variable operations can be erased from the program without affecting the outcome.

In this section, we show how to extend Ficus with prophecy variables. Our starting point is
a single global prophecy variable. On top of this global prophecy variable, we implement effect
handlers that allow for dynamically allocatable local prophecy variables, with an interface similar
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to that of Iris. Finally, we observe that by instrumenting the handlers for heap operations with
prophecy variables, we can automatically extend all heap operations to have prophecies, without
requiring the client program to be directly instrumented with prophecies.

Global Prophecy. Recall that FicusLang has a ghost expression observe v, which records the
value v on a global trace. The entire future value of this trace is predicted in a global prophecy
assertion primProph (g), which is used when performing an observe.

Ewp-OBs
primProph ()

ewpy, observe w(¥) {_.30".5 = w = ¢’ * primProph (¢’) }

By making an observation of w, we immediately learn that the first element of 3 is indeed w, so &
must equal w :: 3’ for some unknown #’.? The adequacy theorem of Ficus is extended to provide
this prophecy assertion.

THEOREM 5.1 (ADEQUACY, Ficus). Let ¢ be a first-order predicate. If primProph (3) F
ewp e (L) {@} is derivable for all 4, then executing e will not get stuck, and if e —»* v then ¢(v)
holds.

However, because this prophecy variable is global, it is awkward to use when trying to do local
reasoning about data structures that need prophecies.

Encoding Local Prophecy Variables. We recover Iris-style local prophecy variables by using
handlers on top of the global observe. Formally, our local prophecy variables are specified by the
following protocols

NEWPROPH (u, ®) £ u = (newproph, ()) * (¥p,d. proph (p,7) - @(p))
RESOLVE_PROPH(u, ®) £ Jo, p, w,d.u = (resolve_proph, (v, p, w)) = proph (p,7) *
(V9’3 = (v, w) = 0" = proph (p,7") -+ ®(v))

A new prophecy variable is created by raising the effect newproph, which returns back a fresh
prophecy variable p. Assertion proph (p, 9) is the local version of primProph (7), which says that
the trace of resolutions that will occur on prophecy variable p is 3. The effect resolve_proph
resolves p to a pair of values (v, w). The first component v is the primary value that we want to
observe, while the second value is used for “tagging” meta-data to certain kinds of prophecies.
Under the hood, these assertions work by slicing the observation trace of the global prophecy
into traces of individual prophecy variables. This is done by making every call to
ghostcodekeywordobserve have the format (p, (v, w)) where p is the identifier of the prophecy

variable that the corresponding observation is for. Then we can (tentatively) define proph (p, 9) Z
Jdy. primProph (3y) = ¥ = filter(p, 3y), where filter is the least fixed-point of
filter(p, (p’, (v, w)) = 0) £ if p = p’ then (v, w) :: filter(p, ) else filter(p, 0)
filter(p, ) = ¢
The filter projects out the observations that are associated with the indicated prophecy variable,
and it returns ¢ as a default value, if the observations in the trace do not match the expected format.

Recall that resources in CSL are exclusive to one thread, so to actually have mutually independent
prophecy variables, we need to decompose ownership of the global prophecy primProph (7) into

2As usual with prophecy reasoning, if the predicted value at the head of the sequence 3 was not w, then we derive a
contradiction from this rule, and no longer have to reason about this moot execution with a misprediction.
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ownership of individual prophecy variables using an authoritative ghost resource algebra.

proph (p,) £ [ o{p > 7} "

I, = 30, M. primProph (7) * [’Z@;iyp X psgem, 0 = filter(p, do)

Here y, is an arbitrary but fixed global variable. Invariant I, connects individual prophecy variables
to the global prophecy and is maintained by the handler. The underlying resource algebra guarantees
that o{p + o} is always an element in the map M,,.

The handler run,.,, provides protocols NEWPROPH and RESOLVE_PROPH. The handler
maintains I,,. To create new prophecy variables, it internally maintains a monotonically increasing
counter for the next fresh prophecy ID so that it can always “slice out” an unused resolving sequence
from the global prophecy for a new prophecy variable. To resolve prophecy variable p to (v, w), it
makes an observation of (p, (v, w)) and updates the ghost resources accordingly. In practice, the
handler rung;, is installed first so that other handlers can use prophecy variables.

Atomic Prophecies. The resolve effect we have seen so far resolves a value that is returned by
evaluating some expression. In other words, the prophecy is resolved after the expression finishes.
However, in some scenarios, it is necessary to atomically execute the expression and prophecy
resolution at the same time, particularly for atomic heap operations like CAS and FAA. Iris provides
support for this so-called atomic prophecy resolution, and we can also implement this on top of
the local prophecy variables through another effect handler with the following protocol:

RESOLVE(¥) (v, ®) 2 Te, p, w, 8.0 = (resolve, (e, p, w)) = proph (p,7) *
Y(e, (Ar.¥Y0'. 0 = (r,w) :: 0" - proph (p,7") = ®(r)))

The handler run.comproph provides this protocol. To handle do (resolve, (e, p, w)), it executes
do (resolve_proph, (do e, p, w). By installing this handler after the run, .., and the handlers
for heap operations, but before the handler run.,,. for concurrency, we ensure that do e and
do (resolve_proph,...) behave as if they executed together atomically, because the additional
raise in run,ionpropn does not trigger an additional preemption.

Implicit Prophecies. As in Iris, the above interface for prophecies still requires a proof developer
to annotate a program with calls to create new prophecies and to resolve them at relevant points.
However, we can use effect handlers to make it so that every heap location has an associated
prophecy variable that predicts the full trace of operations that will be performed on that heap
location. This “prophetic heap” handler interposes on all of heap related effect tags, and adds an
extra resolve operation before re-raising the effect. With this protocol, when a location is allocated,
in addition to the standard points-to assertion [ + v, we also get a proph (1, 9) assertion. When
a heap operation on [ occurs, we also pass this proph (1, 9) assertion, allowing us to deduce that
the value read/written to the location matches the head value in the trace @. This allows for proofs
with prophecies without having to annotate a client program with explicit prophecy operations.
Appendix B describes the protocols in further detail.

6 Case Study: Crash-Recovery Reasoning

Many software systems that store data on durable media such as disks must be crash safe, meaning
that the system must be able to recover from a crash caused by externally generated events such
as power failures. When a crash occurs, any data that the system has in volatile memory, such as
RAM, will be wiped, but data in durable storage will be preserved. After the system restarts, it will
typically re-run a recovery procedure that restores system invariants. A number of program logics
and verification frameworks have been developed for reasoning about such systems [12, 14, 37, 42].
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FUNcrash_trigger = Amain. rUNcrash = rec run main.
try main () with try main () with
vk = letr:=dowvin vk = match o with
if nondet_bool () then do (crash, ()) (crash, ()) = observe (); run main
elsekr | (n,0) = do (n,0)
| reto=0o | reto =0

Fig. 6. A model of crash and recovery execution.

In this section, we show how to model crashes and recovery with effect handlers, and apply Ficus
to derive protocols for reasoning about these systems in the style of Perennial [12], a separation
logic for reasoning about the combination of concurrency and crash safety.

The process of crashing and recovering is modeled by the pair of handlers in Figure 6. The
handler runcrash_trigeer is installed at the inner-most level of a stack of effects for each thread,
allowing it to interpose on every do.? It handles these effects by non-deterministically choosing to
either trigger a crash by raising crash, or by simply re-raising the effect and returning the result
to the continuation. The second handler, run. .., responds to this trigger by throwing away the
captured continuation k and re-starting the system by running main. Note that this handler does
not directly deal with wiping the volatile state of the system. Instead, this is handled implicitly: by
installing handlers for volatile state (such as the heap handler) after this crash handler (i.e., as part
of main), this volatile state will be effectively thrown away as a result of re-running main from
scratch. In contrast, durable state can be preserved by installing these handlers before installing the
crash handler at an outer level.

6.1 Managing the Crash Invariant

In order to establish that a system is crash safe, it is essential to show that when the system restarts,
the main procedure finds itself in a state that satisfies its precondition. Perennial maintains a global
crash invariant R that must hold before and after each step of execution, and which describes the
durable state that the system needs upon restart.

Local Crash Conditions. Reasoning about a global crash invariant would run counter to the
principle of local reasoning in concurrent separation logic. To recover per-thread reasoning about
the crash invariant, Perennial extends the weakest precondition of each thread with an assertion
called a crash condition. The crash condition enforces the portion of the global crash invariant
that a given thread owns. In Ficus, rather than changing the weakest precondition to add an
additional component, we can instead capture this local crash condition through worlds and a
protocol transformer called DURA. We write Tokc(R,) for a world stating a thread is responsible
for ensuring that the local crash invariant R, holds before and after each step it takes. The DURA
protocol forces a thread to show that this R holds before and after each step of execution.

DURAw (¥)(2,®) 2 FRe. ¥(0, 7. , Brarore ) Re A wotoke (221 2(1))

Notice that R, and the postcondition is connected by a logical conjunction A because the program
can only either crash or continue so only one of R, and the postcondition will be used.

The derived proof rules for the crash handlers then require a specification for the top level main
procedure of the following form.

R+ EWPwaToke (+R),. MAIN () (DURAw (¥)) {r. 3R.. J.EWGBTokc(RC)RC AO(v)}

Here, R is the global crash invariant that also serves as the precondition for main, and ¢ is the
post-crash modality [47, 55] that captures how crashing modifies volatile and durable resources.
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Intuitively, this says that the main thread starts with precondition R, and the initial crash condition
requires R holds after a crash.

Concurrency with Crashes. To add support for concurrency, we install the concurrency handler
below the outer crash handler. Because of the crash condition, we need to strengthen the CONC
protocol to a protocol called CRASHCONC.

CRASHCONCw (%) £ DURAw (¥ & FORK!, (¥))
FORK{ (¥) (v, @) = Je.v = (fork,A_.e) *
> €WPyaToke (True), L € (CRASHCONCw(¥)) {3R.. lISW@TOI(C(RE)Re} x* ®(())

CRASHCONC follows the same structure of CONC and is also a guarded fixed point. However, a
forked child thread starts with a trivial crash condition and can terminate with any crash condition.

When forking a child thread, one would naturally like to move some resources from the parent
thread to the child thread. Similarly, synchronization primitives like locks are logically thought of
as transferring ownership of resources in CSL. However, in order to transfer ownership of durable
resources that might be part of the crash condition, we also need a mechanism to transfer the
obligation to maintain that part of the crash condition. Crash borrows in Perennial [49] provide
a mechanism to “borrow” part of the crash condition as an ownable resource and transfer this
resource to the child thread. A crash borrow has content P that describes the resources
currently contained, and an associated crash obligation R, where O(P - R).

The crash borrow can be understood as a box that packages up a resource P while preserving
the obligation R in the event of a crash. They are used through the following two key rules.

WuprD-CBRWALLOC WurD-CBRWRETURN
»P (P =« R)
Tokc (Re*R) ETokC (Re) Tokc (R¢) ETokc (Rc*R) >P

Rule Wupp-CBRWALLOC creates a crash borrow | P | R|. It consumes a resource P that is stronger
than R and removes R from the crash condition. Rule Wurp-CBRWRETURN opens the box
to extract resource P, in exchange, it adds R to the crash condition. In Perennial, this crash borrow
mechanism is encoded on top of standard Iris invariants in a complex manner that requires
extensive use of later credits [45] to avoid inconsistencies from impredicative circularities. In Ficus,
the encoding is considerably simpler, because we are able to use a separate world for managing
crash conditions and crash borrows. The complete model can be found in Appendix C.

6.2 Asynchrony and Crash-Aware Prophecies

Many durable storage media are asynchronous, meaning that when a write is performed, the written
value does not immediately become durable. Instead, the written value is first stored in some
volatile buffer and only later made durable. If a crash occurs while the value is still in the volatile
buffer, then the write is lost. Reasoning about asynchrony is challenging when trying to prove
that a concurrent durable data structure satisfies durable linearizability [26], because it makes the
durability of an operation future dependent.

To deal with this challenge, Perennial introduced a prophetic disk points-to assertion of the form
1 9 [v.]o which says that the disk address I currently stores the value v, and after a crash occurs,
the stored address will be v.. In other words, this assertion bundles a normal points-to with a form
of prophecy about the post-crash state. However, in Perennial, this primitive could not re-use the
existing support for prophecies in Iris, and instead has an ad-hoc soundness proof. The issue is
that, with standard Iris prophecy variables, there is no way to make a prophecy about whether an
event will happen before or after a crash occurs.
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In contrast, in Ficus it is easy to handle this by incorporating prophecy resolution as part of the
implementation of the crash handler. We use the observe () statement in run.,,s, to effectively
record that a crash has occurred in the trace of every prophecy variable. Formally, for every
prophecy variable p, proph (p,d) + ¢(0 = ¢). The definition of filter in § ensures that this truncates
the trace of events in the prophecy stream for all variables. Thus, when inspecting the prophecy
stream, it is possible to determine whether a crash will occur before the prophecy is resolved.
We call these resulting prophecy variables crash-aware. Using this mechanism, we implement
an asynchronous disk with prophetic points-to assertions by resolving a crash-aware prophecy
whenever an asynchronous disk operation is performed. More details can be found in Appendix C.

7 Case Study: Distributed Systems with IronFleet-Style Atomic Blocks

In this section, we consider a distributed system with multiple nodes connected by an unreliable
network, in which nodes communicate through messages that may be dropped, delayed, duplicated,
or re-ordered. On top of the network, a global scheduler decides the order of execution of nodes.

Network. The network provides two operations. NETWORK = SEND & RECV, where
SEND(v,®) £ s, t,m, M. v = (send, (s,t,m)) =t ro> M = (t r~> {(s,t,m)} UM - ®(()))
x=1inl () V (3s,m.x = inr ))

RECV(v,®) £ At, M. v = t) «t M = |Vx. t M
(v, D) ,M.v = (recv,t) st ro *(x o *((s,t,m)/\(s,t,m)eM)—*d)(x)

Assertion t ~»> M says that M is the set of messages that have ever been sent to address ¢. Since
messages can be arbitrarily duplicated, this set is monotonically increasing w.r.t. the subset relation.
The SEND protocol expects a package of (source address, destination address, message) as input,
and adds this package to the message history of the destination address. The RECV protocol expects
the destination address ¢t as input and non-deterministically chooses to either not return a message
or to return an arbitrary message that has been sent to t. The dropping of a message is implicitly
modeled as just never having it be selected for receipt. Protocol NETWORK is provided by the
handler runec,ork which implements the network as a soup of messages [30, 58].

Scheduler with IronFleet-Style Atomic Blocks. Next, we need a scheduler rung; . that specifies
how nodes run concurrently through a DISTRY;, protocol.

DISTR{;, £ ATOMw (SEND & STARTY;) & RECV
STARTY (0, @) 2 Fe.v = (start,A_.e) * (t = C V> ewpy, e (DISTRS)) {_. True}) * @(())

The rung;<: handler resembles run.,,. and potentially transfers control to different nodes when an
effect is raised by a node. The START protocol is used for initially creating nodes. In the protocol
above, the RECV effect is outside the ATOM protocol transformer. The reason for this is that
rungis: scheduler does not transfer control to another node when processing an recv operation. In
other words, a node can receive a series of messages without transferring control to another node.
This modeling choice is inspired by IronFleet [25] which uses a movers-based parallel reduction
proof [32] to treat a sequence of receives followed by a sequences of sends as an atomic step. Our
global scheduler permits the prover to view a series of recv operations, followed by a series node-
local processing operations, followed by one send operation as an atomic block. As a result, because
the RECV is not included in the ATOM component, we do not need to close shared invariants when
performing a RECV operation.

Even though this scheduler does not include preemptions at RECV, the absence of these pre-
emptions does not affect the overall set of possible behaviors of the program. To prove this, we

4We preempt after a single send because a node could diverge after sending. IronFleet avoids this by proving total correctness.
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apply a similar technique as in §4, and use Banyan to prove that an explicit yield preemption is
contextually equvialent to the unit value. Thus, adding in additional preemptions does not change
the program’s behavior. To carry out this proof, we develop a node-local specification resource
specn);(e), similar to the thread-local version described in §. It also uses the evidence accumulation
technique described in §.3, but additionally accumulates the evidence that a node can delay message
receipt without changing behavior. Intuitively, if a message m is received received at some time T,
then if we delay that receipt to some later time T”, it is still possible to receive m. We capture this
evidence using a monotonic resource algebra to track the set M of messages. More details can be
found in Appendix D.

8 Related Work

Program Logics for Effect Handlers. The most closely related work is the Hazel logic for effect
handlers [18]. As discussed in §2 and §3, Ficus extends Hazel with support for extensible worlds.

Hazel only handles unary reasoning, whereas Banyan supports relational reasoning through an
encoding into Ficus. Recently, de Vilhena et al. [20] developed Blaze, a relational logic for effect
handlers. Like Banyan, Blaze builds on a unary logic and represents a specification program via
ghost state. However, unlike Banyan, in which the unary logic and the specification program have
separate protocols, Blaze instead provides a judgement with a relational protocol. They use this to
prove refinements in which the interpretation of effects is different between the two programs. In
contrast, our examples keep effects the same on both sides and prove that client programs under
these effects are equivalent.

Among other examples, de Vilhena et al. [20] use Blaze to prove that a handler implementation of
concurrency refines a primitive concurrency effect. This refinement is in some sense the opposite of
the direction that motivated our refinement proof in §: it essentially shows that for every execution
of the concurrency handler (which only preempts at effects), there is a corresponding execution
using primitive concurrency (which preempts at every step). In contrast, we show that inserting
additional preemption points when using the concurrency handler does not generate new behaviors.
This is morally equivalent to showing that the concurrency handler already covers all possible
heaviors that could be generated by a full interleaving semantics. It would be interesting to apply
Blaze’s approach to the kinds of applications we have considered here to justify the soundness of
alternate implementations of effects that allow for deriving stronger reasoning rules.

Our logical relations are for type systems with a fixed collection of effects and do not provide
rules for typing general effect handlers. Tes [19] and Affect [54] use logics to construct unary logical-
relations models for type systems for effect handlers. Biernacki et al. [9, 10] directly construct a
binary logical-relations model for effects and handlers using biorthogonality and step indexing.

Extensible Program Logics. As described in the introduction, Vistrup et al. [56] develop an
approach to extensible program logics using ITrees [59]. They use a mechanism called logical
effect handlers to interpret ITree events for an effect, which has similarities to the way Hazel and
Ficus’s protocols give a logical interpretation of what a raised effect will do. Their soundness proofs
relate these logical effect handlers to interpretations of the effects. In contrast, the corresponding
soundness of a protocol in Ficus is justified by the rule for try that installs an effect handler and
makes the protocol accessible. Since the handlers are themselves just programs written in FicusLang,
one uses Ficus itself to prove these handlers implement the protocol. Thus there is no distinction
between verifying a program and proving the soundness of an extension to the logic. Another
difference is that using the the effect handler approach, we are able to develop a relational logic by
representing a specification program as ghost state. Vistrup et al. [56] do not develop a relational
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logic. On the other hand, they show how to model other features, such as total correctness and
angelic non-determinism, which we do not consider.

Like Ficus’s extensible worlds, Matsushita and Tsukada [34] parameterize the Iris update modality
and Hoare triples by a notion of a world. However, they require that the update shifts to the same
world before and after, i.e., only considering shifts of the form By . Hence, they cannot model
the use of extensible worlds in §3, in which invariants are kept open across non-preempting steps.

Dijkstra Monads [46] offer a framework for deriving pre- and postcondition reasoning about
dependently-typed programs with monadic effects, and, more recently, some aspects of algebraic
effect handlers [33]. However, Dijkstra Monads have not been applied to effects like concurrency,
crashes, or distributed execution, which might be challenging to encode as monads in a composi-
tional way. Existing work on Dijkstra Monads does not support relational reasoning.
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A Ficus

A.1 Semantics

. K
Head reduction rules. e —y, e’

Hp-BETa  (rec f x.e) v—, e[(rec f x.e),0/f,x] Hb-CoNT (cont N)o —p, N[o]

HD-EFFAPR &1 §(N)[02] -1 §(e1 N)[02] Hp-Do do v — §([1)[o]

Hp-EFrAPL  §(N)[v1] 02 —n §(N v2)[01] Hb-P1cx pick —p 2

Hp-ErrDo  do §(N)[v] =4 §(do N)[o] Hp-OBs  observe o [—U]—>h 0
Hp-TRYEFF try §(N)[vo] withv k = e | retov, = e ;h e1[vg, cont N /vy, k]
Hp-TRYVAL tryoywitho k= e; | retov, = e i>h ez vo/v2]

. . eps K K
Pure Reduction and Its Reflexive Transitive Closure. e — ¢’ and e =" ¢’

ee 23K, 66 e=K[e]Ae =K[&]AéDp &
x  /

K - 5> o> o - - K1 Ky
e—"e L (e=e Ak=¢)V(Te" Ki,Ko.K =K HEikys ANe—pe’ Ae” —"¢)

A.2 Reasoning Rules

Ewp-VALUE Ewp-Do Ewp-DoFurDp
w, Pw, (0) ¥(v, @) w,P LY (0, (Ar. | By, ®(r)))
ewpy, w, v (¥) {®} ewpyy, do v (V) {®} ewpy,, w, do v (¥) {®}
Ewp-MonNo Ewpr-WorLDMoONO
ewpy, w, € (¥) {®} Y C ¥ Vo.®(v) * By, (v) ewpy e (¥){®} WCW
ewpy, w, € (¥') {2} ewpyy, e (V) {®}
Ewpr-FRAME Ewp-WUPDPRE
R ewpy, w, e(¥) {0} w,Pw, eWpw, w, € (¥) {®}
ewpy, w, € (¥) {v. R+ ®(v)} ewpy, w, € (¥) {®}
Ewp-WuprDPosT Ewp-PURE
ewpy, w, € (¥) {0. w,Pw, ©(0)} ewpy, w, € (¥) {®} el —=%e
EWDPw, w, € (P) {@} eWDw, w, e’ (V) {®}
Ewp-BIND EwP-WORLDFRAME
ewpy, w, € (¥) {0. ewpy, y, N[o] (¥) {®}} ewpy, w, € (¥) {0}
ewpy, w, Nle] (¥) {P} eWpw, sw,w,ew € (¥) {P}
Ewpr-OBs

primProph (9)

ewpy, observe w (¥) {_.30".0 =w :: @’ = primProph (¢') }
A.3 Model

ewpy, w, 0 (¥) {®} = y Bw, 2(0)
ewpy, w, S(N)[0] (¥) {2} = B, ¥ (v, Aw. B »(ewp, v, N[w] () {®}))
ewpy, w, € (¥) {0} = VKy, Kz. primProph® (k) +#K2) = g B, (Je’.e — €)x
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Vel e =5 ¢ B, > B primProph® (ky) = ewp, v, €' (¥) {®}

primProph® (3) £ [eEx(3) " primProph (3) £ | oEx() "

B Prophetic Heap

PROPH_ALLOC(v,®) = Jx.v = (alloc,x) = (V1,8. 1+ x = proph (I,3) prophE (1) - ®(l))
PROPH_LOAD(v,®) £ 3L, x,3.0 = (1load,l) [ + x * proph (1, 9) = prophE (1) =
(Vo' 1 > x *v = (x,load) :: ¥’ * proph (,3") = prophE (I) - ®(x))

PROPH_LOAD’ (v, ®) £ 31, ¢q,x.v = (load,l) =1 s x prophD () = (I s x ®(x))
PROPH_STORE (v, ®) £ 3, x,y,3.v = (store, (I,y)) = [ + x = proph (I,3) * prophE (I) *
(Vo1 — v 9 = ((),store(y)) == &’ = proph (1,3") * prophE (1) -+ ®(()))
PROPH_CAS(v,®) = 3, w,x,y,0.0 = (cas, (I,x,y)) = [ +— w = proph (I,3) * prophE (I) *
(Vd'. I > (if w = x then y else w) * 3 = (w = x, cas(x,y)) = '
proph (1,7") * prophE (I) = ®(w, w = x))

PROPH_CAS' (v, ®) £ 3l,q, w,x,y.v = (cas, (lxy))*l|—>w*w;&x*prophD(l)#<

(1 W w ®(w, false))

C Crash Recovery System

This section uses the complete Tokc (&, R,) token. Compared to Tokc(R.) used in §6, it has one
extra parameter for the enabled crash borrows. The connection between two tokens is Tokc(R,) =
Toke (T, Re).

C.1 Post-crash Modality

crashed 2 AM: PID — List(Valx Val). M """ «Vp >3 e M.5=¢
#P = crashed -+ crashed = P

C.2 Protocol
R is the global crash invariant. There is no requirement on ® because crash will never return.
CRASHCONC intentionally uses the same tag as the regular CONC protocol to prevent having two
schedulers. As said by the FORK’ protocol, a child thread is permitted to change the crash condition
during execution, as long as it is consistent with the Tokc (&, R) token. The crash condition cannot
be violated even if a thread terminates.
CRASH(v,®) £ v = (crash,()) = (BR)
DURAw (¥) (v, ®) = 3R. ¥(0v, (Ar. | Bwaroke (r.R) (R A waToke (1.8) B P(1)))
CRASHCONCw(¥) = DURAw (¥ & FORK, (%))
FORK{, (¥) (v, ®) £ Je.v = (fork,A_. e)*

> EWPWeToke (T True),L € (CRASHCONCw (¥)) { e L'SW@TokC(T R.) } *®(())
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Interaction between protocols:
DURAw(¥) C ATOMyw (¥) T ¥ ATOMw (¥) C CONCw (¥)

DURAw (¥) C CRASHCONCyw (%)

Ewp-SEQ-ATOM Ewp-ATOM-DURA
ewpy, e (¥) {®} O(R +R) R ewpy e (ATOMw(®)) {v. R - ®(v)}

ewpy,ew € (ATOMw (¥)) {P} eWPwaToke (1.R) € (DURAW (D)) {®}

Ewp-Conc-CRASHCONC
ewpyy, e (CONCw (D)) {D}

EWPy e Toke (T, True) € (CRASHCONCw (®)) {9}

C.3 Crash Hoare Logic

ewpc(()ale),(sz,Rz) e (V) {®} = ewpy, w, € (CRASHCONCTOkI(T)(‘P)> {®}
where W; = Tok((&;) @ Tokc(E;, R;)

The ewpc assertion does not support the monotonic rule, but this will not become a restriction in
practice because one can always use the upward closure of a non-mask-changing ewpc.

ewpc g ) € (F) {0} = VR, ® . (Yo. ®(v) »+ @' (v)) A (R * R") = ewpc(()&R,) e (¥) {9}

The logical conjunction A between ® and R precisely captures the monotonicity in a crash system.
Only one part of this conjunction is needed at a time. The ® part is used during normal execution
and the R part is used when the system crashes.

C.4 Crash Borrow
See Figures 7 and 8.

C.5 Asynchronous Disk

The client rules about the asynchronous disk are specified by protocols in Figure 9a. Resource
I -9 [v.]o declares the ownership of an asynchronous disk location I. There are two values
associated with one location: v is the value visible to the system before crash, and v, is the value
visible to the system after crash. Using the post-crash modality, this means [ ¢ [0.]o - 1 4 o,.
Notice that because asynchronous disk is essentially a synchronous disk plus a software buffer, the
points-to assertion will become a regular disk points-to [ 9 v, after crash. Only at the recovery
stage will the asynchronous disk points-to assertion be recreated: I -9 v, + ¢I =9 [v.]o., where ¢
is called setup modality.

The ADISK_LOAD protocol is standard. According to protocol ADISK_STORE, an adisk_store
effect immediately updates the before-crash value at location [ to w, but the after-crash value v;,
could be either w or v, depending on whether the buffer will be written back before the next crash.
An adisk_barrier effect issues a global write barrier that writes-back the whole buffer to the disk.
Therefore, the client can use this effect to write-back an arbitrary number of locations. Because the
buffer was indeed written back before crash, we now know that v, must have equaled to v.

Use of Prophecy Variables in the Effect Handler. The handler for asynchronous disk is shown
in Figure 9b and important logic constructions used to verify it are listed in Figure 9c. It uses a
volatile state to store the buffer. For each buffered location, the handler associates a prophecy
variable to it, indicating whether this location will be written back before crash. For buffer item
I — (v, p), the value v will be written back iff 37’. proph (p, ((), true) :: ¥’), which is formalized
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WurD-CBRWALLOC WupPD-CBRWRETURN WuprD-CBRWRENAME

»P  O(>P «»R) PR Nce& PIRN Nce
N N’
Toke (8,Re*R) 'ETokc(S,RC) Tokc(&Rc)'ETokc(&Rc*R) >P ETokC(S,RC)

WurD-CBRWACCUPDATE

PIRY Nce&
N
Toke (6.8e) PToke (8\N.R) ® F * (VQ- >Q#0(>Q +>R) TokC(S\N,RC)ETokC(S,Rc) )

Wuprbp-CBRWMoONO

N >0(P" «R) »P=P) >0 =R NC&E
/ 4 N
Boke (E.R.)

Wurp-CBRWSPLIT

Pl xPy R +Ry]" 0O@P +»R) O@FP,«»R) NCE&

N N
Broke (6.8, PLL R * [Py | Ry
WuprD-CBRWCOMBINE
N N
P | Ry] Py | Ry NCE

N
Proke(&R) L P1L* P2 | Ry % Ry

(a) Client rules.

WsAT-CINVALLOC

————————————————

loEx(dom(I 1Ycinvxet o{i—> A (>RC “Ywnd % DRC Clnv(R WCBrw ‘"_l_ }E
| = | g ! ]

1—R.€1

B >R

(b) Handler rules.

Fig. 7. Reasoning rules of crash borrows and crash conditions.

by the willWB assertion. For a adisk_load effect, the handler returns the cached value if location
I is in the buffer (line 4), otherwise, it uses disk_load operation to load the value directly from the
physical disk and buffers the result (line 5). For a adisk_store effect, the handler always writes the
result to the buffer, but if the location is already in the buffer, the handler will resolve the associated
prophecy variable to false, meaning that the old value in the buffer will never be written back
(as it has been overwritten by the new value). For a barrier effect, the handler writes back the
whole buffer and resolves each prophecy variable to true. In the event of a crash, all prophecy
variables will become ¢ and because ¢ # ((), true) :: _, we learn that remaining values in the buffer
will never be written back.

Concretely, the asynchronous disk points-to assertion [ —¢ [0.]o is defined as a view of the
adp(B, [, v., v) assertion, which B is the buffer. The assertions consists of two cases. If [ is not in the
buffer, then v is in the physical disk and v, = v. If [ is in the buffer, then v is the buffered value and
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————————————————————————————————————————————————

K (opel” Vi) roer <R ||| K R (*R

i (P,R)eB (LR)eB R.eC

-+ >R

Fig. 8. Model of crash borrows and crash conditions.

the value in the physical disk depends on willWB. If willWB, then the current value in the physical
disk is unknown but also unimportant because it will eventually become v; otherwise, the value in
the physical disk is o.. The connection between adp(B, I, v, v) and I —¢ [0.]v is enforced by the
authoritative resource algebra.

D Distributed System

specn) (e) £ 3k, r. {k,r, t}}y x loop(k r, e)

loop = 1fp loop (e, €). (VK. spec(K[eg]) ~ B, spec(K[e]))
V (VK. spec(K[eo]) - IH, t, M. spec(K[eff (recv,t) H]) = ¢ ro!® M « loop(H[inl ()],e))
V (VK.spec(K[eg]) - 3H, s, t, m, M. spec(K[eff (recv,t) H|) =t ro® M« (s, t,m) e M

x loop(H[inr (s,t,m)],e))

It also uses the evidence accumulation technique described in §4.3, but for a given thread, in
addition to accumulating the evidence it can be executed to e via pure steps, we now also need
to accumulate the evidence that the thread may raise recv effects later on while executing to e.
Intuitively, the point is that if a recv executed at some point x can return a message m, then if
we delay that recv to some later time x’, it is still possible for it to return that same message m.
This is because the set of messages is monotonically growing. This evidence that a later recv can
return a given message is accumulated in the least fixed point loop. Intuitively, loop (e, €) allows
ep to execute to e via three ways: (1) Some pure steps. (2) First raising a recv effect that receives
nothing and then continuing with the result of recv. (3) First raising a recv effect that receives
some messages (s, t,m) and then continuing with the result of recv. Assertion ¢t ~»® M in cases
(2) and (3) is a lower-bound resource of t r -, meaning that M is a subset of messages that have
ever been sent to address t.
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ADISK_LOAD (u, ®) 2 3l,0,0.u = (adisk_load,1) x I =% [o.]o * (I > [oc]o ~+ (v))
ADISK_STORE (1, ®) £ 3L, 0.,0,w.u = (adisk_store, (I, w)) * [ =9 [0.]ox
(Yol € {w,0l}. 1 =9 [ol]w = ®(()))

BARRIER(y, ®) 2 AM.u = (barrier,()) «| K 19 [o.]o|=

I (ve,0)eEm

Kk oe=oxl? o]0 |+ ()

I (ve,0)em

(a) Protocol.
run,disk = Amain.
write @;
try main () withretov = v | vk = matchowith
(adisk_load,l) = let buf :=read in
(if I € buf then k (fst buf[l])
else let p := newproph,v := disk_load [/ inwrite ([l — (v, p)]buf); k (v))
| (adisk_store, (I,w)) = let buf := read in
(if I € buf then resolve_proph (snd buf[l]) to false);
let p := newproph inwrite([l — (w, p)]buf);k ()
| (barrier,()) = let buf :=read in
iter (Al (v, p). resolve_proph p to true;disk_store [ v) buf;write @
| (n,0) = do (n,0)

— ®© W o NO Ul &~ WN —

—_

(b) Implementation.
willWB(3) £ 35.5 = ((), true) = &’ adp(B,Lv,0) 21 ¢Bxl—%0vxo. =0V
3p. B[I] = (v, p) * 35. proph (p, 7) * (if willWB (%) then (Ix. -9 x) v, = v else [ - v,)

(c) Verification.

Fig. 9. Asynchronous Disk.
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