NYU

Almost-Sure Termination
by Guarded Refinement

Simon Oddershede Gregersen'

joint work with
Alejandro Aguirrez, Philipp G. Haselwarter?, Joseph Tassarotti', and Lars Birkedal?

"New York University 2parhus University

Most of the time, we want our programs to terminate...

Most of the time, we want our programs to terminate...

How do we prove it?

Most of the time, we want our programs to terminate...

How do we prove it? For probabilistic programs, the argument can be quite subtle.

Most of the time, we want our programs to terminate...

How do we prove it? For probabilistic programs, the argument can be quite subtle.

letr = reftruein
while ! r do

r « flip
end

Most of the time, we want our programs to terminate...
How do we prove it? For probabilistic programs, the argument can be quite subtle.

letr = reftruein

while ! r do
r « flip
end

The program almost surely terminates since lim, .1 —

A New Proof Rule for Almost-Sure Termination

ANNABELLE MCIVER, Macquarie University, Australia

CARROLL MORGAN, University of New South Wales, Australia and Data61, CSIRO, Australia
BENJAMIN LUCIEN KAMINSKI, RWTH Aachen University, Germany and UCL, UK
JOOST-PIETER KATOEN, RWTH Aachen University, Germany and IST, Austria

We present a new proof rule for proving almost-sure termination of probabilistic programs, including those
that contain demonic non-determinism.

An important question for a probabilistic program is whether the probability mass of all its diverging runs
is zero, that is that it terminates “almost surely”. Proving that can be hard, and this paper presents a new
method for doing so. It applies directly to the program’s source code, even if the program contains demonic
choice.

Like others, we use variant functions (a.k.a. “super-martingales”) that are real-valued and decrease randomly
on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are
parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing
rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains.

CCS Concepts: « Theory of computation — Program verification; Probabilisti putation; Axi
semantics;

Additional Key Words and Phrases: Almost-sure termination, demonic Jeterminism, program logic pGCL.
ACM Reference Format:

Annabelle Mclver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A New Proof
Rule for Almost-Sure Termination. Proc. ACM Program. Lang. 2, POPL, Article 33 (January 2018), 28 pages.
https://doi.org/10.1145/3158121

A New Proof Rule for Almost-Sure Termination

ANNABELLE MCIVER, Macquarie University, Australia

CARROLL MORGAN, University of New South Wales, Australia and Data61, CSIRO, Australia
BENJAMIN LUCIEN KAMINSKI, RWTH Aachen University, Germany and UCL, UK
JOOST-PIETER KATOEN, RWTH Aachen University, Germany and IST, Austria

We present a new proof rule for proving almost-sure termination of probabilistic programs, including those
that contain demonic non-determinism.
An important question for a probablllshc program is whether the probability mass of all its diverging runs

is zero, that is that it terminates “almost surely”. Provmg that can be hard, and this paper presents a new
thod for dai Te \H A tlar do il if 4]

THEOREM 4.1 (NEW VARIANT RULE FOR Loops). Let I, G c3 be predwates let V: Z—»R>o bea
non-negative real-valued function not necessarily bounded; let p (for “probability”) be a fixed function
of type R0—(0, 1]; let d (for “decrease”) be a fixed function of type R>o—Rq, both of them antitone
on strictly positive arguments; and let Com be a pGCL program.

Suppose the following four conditions hold:

(i) 1 is a standard invariant of while (G) {Com} , and

(i) GAI=> V>0, and
(iii) For any ReR, we have p(R) - [GAI AV=R] < wp.Com.[V < R-d(R)], and
(iv) V satisfies the “super-martingale” condition that

for any constant H in R we have [GATI]- (HeV) < wp.Com.(HeV),

where HOV is defined as max {H-V, 0}.
Then we have [I] < wp.while (G) {Com}.1.

A New Proof Rule for Almost-Sure Termination

ANNABELLE MCIVER, Macquarie University, Australia

CARROLL MORGAN, University of New South Wales, Australia and Data61, CSIRO, Australia
BENJAMIN LUCIEN KAMINSKI, RWTH Aachen University, Germany and UCL, UK
JOOST-PIETER KATOEN, RWTH Aachen University, Germany and IST, Austria

We present a new proof rule for proving almost-sure termination of probabilistic programs, including those
that contain demonic non-determinism.
An important question for a probablllshc program is whether the probability mass of all its diverging runs

is zero, that is that it terminates “almost surely”. Provmg that can be hard, and this paper presents a new
thod for dai Te \H A tlar do il if 4]

THEOREM 4.1 (NEW VARIANT RULE FOR Loops). Let I, G c3 be predwates let V: Z—»R>o bea
non-negative real-valued function not necessarily bounded; let p (for “probability”) be a fixed function
of type R0—(0, 1]; let d (for “decrease”) be a fixed function of type R>o—Rq, both of them antitone
on strictly positive arguments; and let Com be a pGCL program.

Suppose the following four conditions hold:

(i) 1 is a standard invariant of while (G) {Com} , and

(i) GAI=> V>0, and
(iii) For any ReR, we have p(R) - [GAI AV=R] < wp.Com.[V < R-d(R)], and
(iv) V satisfies the “super-martingale” condition that

for any constant H in R we have [GATI]- (HeV) < wp.Com.(HeV),

where HOV is defined as max {H-V, 0}.
Then we have |[I] < wp.while (G) {Com}.1. |

While successful, most existing works consider first-order languages and their
solutions apply to syntactic while loops.

While successful, most existing works consider first-order languages and their
solutions apply to syntactic while loops.

But what if we were to consider a higher-order language?

While successful, most existing works consider first-order languages and their
solutions apply to syntactic while loops.

But what if we were to consider a higher-order language?

Multiple ways for the program to not terminate!

As a (somewhat extreme) example, consider

fix = AF. letr =ref (Ax.x)inr « (Ax.F (Ir) x); !'r
F2Af. An.if n == 0then ()
elseif flip thenf (n—1)else f (n+1)

walk £ fix F

By tying Landin’s knot, we can encode a fixed-point combinator and thus recurse.

As a (somewhat extreme) example, consider

fix = AF. letr =ref (Ax.x)inr « (Ax.F (Ir) x); !'r
F2Af. An.if n == 0then ()
elseif flip thenf (n—1)else f (n+1)

walk = fix F
By tying Landin’s knot, we can encode a fixed-point combinator and thus recurse.

In essence, however, the termination argument is well known.

1 1 1
1 1 1 1
2 2 2 2

This work

A higher-order separation logic, Caliper, for termination-preserving refinement
between probabilistic programs and probabilistic transition systems.

For example, to show that walk(n) terminates we show the refinement

walk(n) < QQQ

1
2

As a consequence, by showing that the model terminates, so does the program.

Caliper

Two key components:

B A refinement weakest precondition rwp e {®} for reasoning about programs,
B A separation logic resource spec(m) for tracking the current model state.

Theorem (Soundness)

If spec(m) + rwp e {®} then exec|(m) < execy(e).

Caliper cont’d

The program logic satisfies the typical separation logic rules, e.g.,

Vet v — &) +rwp refo{d} (wp-alloc)
(L0 — D) x> orrwp ! £{D} (wp-load)
(> w—®())xl>oFrwpfl«— w{d} (wp-store)
rwp e {o.rwp K[v] {®}} + rwp K[e] {®} (wp-bind)

..but there is no rule for reasoning about recursion or loops!

Caliper cont’d

Instead, Caliper makes use of guarded recursion with the later modality and, in
particular, the L6b induction principle.

>P+P
+ P

Caliper cont’d

Instead, Caliper makes use of guarded recursion with the later modality and, in
particular, the L6b induction principle.

>P+P
+ P

Key idea

By only allowing later modalities to be eliminated when the model makes a
transition, we preserve termination across the refinement relation.

Later elimination

The simplest case is when the model makes a deterministic transition:

m, =" my spec(ms) * P+ rwp e {®}

spec(m;) * »P+rwpe{d}

Later elimination

The simplest case is when the model makes a deterministic transition:

m; —* my spec(my) * P+ rwp e {®}

spec(m;) * »P+rwpe{d}

For probabilistic transitions, Caliper satisfies a range of coupling rules in the style
of probabilistic relational Hoare logic (pRHL), e.g.,

m, # mr
m—: m, spec(m,) * P+ rwp K|[false] {®}
m—?2 mr spec(mr) = P+ rwp K[true] {®}
spec(m) = > P+ rwp K[flip] {®}

Example

letr = reftruein
while ! r do

r « flip
end

IA

N =
[T

Example
Goal

letr = reftruein
while ! r do

r « flip
end

rwp

{--spec(1)}

Assumptions

spec(T)

Example
Goal

while ! £ do
rwp (

¢ — flip) {_.spec(L1)}
end

Assumptions

spec(T)
f{ — true

Example
Goal

while ! £ do
rwp (

¢ — flip) {_.spec(L1)}
end

Assumptions

spec(T)
{ — true
spec(T) = £ > true —x
rwp ... {...}

Example

Goal Assumptions
if 1¢£then spec(T)
¢« flip; £+ true
rwp | while!¢do | {-spec(L)}

) spec(T) = £ > true —x
¢ « flip
end rwp ... {...}

Example
Goal

t « flip;
while ! £ do
t « flip

end

rwp

{--spec(1)}

Assumptions

spec(T)
{ — true
spec(T) = £ > true —x
rwp ... {...}

Example

Goal Assumptions
t — flip; spec(T)
rwp while! £ do {) SpeC(J_)} f — true
t « flip -

spec(T) = £ > true —x
rwp ... {...}

end

m, # mr
m—?2 my spec(m_) = P+ rwp K|[false] {&}
m—3 mr spec(m+) = P+ rwp K|[true] {®}
spec(m) = > P+ rwp K| flip | {®}

Example

Goal
{ «— b;
rwp W?E!fﬁigo {_.spec(L)}
end
m, # mr

m—3 m, spec(m_) = P+ rwp K|[false] {&}
m—3 mr spec(m+) = P+ rwp K|[true] {®}

spec(m) = > P+ rwp K| flip | {®}

Assumptions

spec(if b then T else 1)
{ — true

spec(T) * £ > true —x
rwp ... {...}

Example
Goal

while ! £ do
rwp (

¢ — flip) {_.spec(L1)}
end

Assumptions

spec(if b then T else 1)
b
spec(T) * £ > true —x
rwp ... {...}

Takeaways

The approach taken in Caliper exploits three key ingredients:

B Higher-order separation logic for powerful modular reasoning
B Guarded recursion for termination-preserving refinement reasoning
B Probabilistic couplings for “aligning” probabilistic transitions

Well-tested abstractions that scale to reasoning about complex programs!

More in the paper

B Semantic model and soundness of the logic.

B More general and expressive coupling rules (uniform sampling), asynchronous
couplings for flexible coupling-based reasoning.

B A series of case studies showcasing the approach and how it supports
compositional separation-logic reasoning.
» A higher-order list generator
P Lazily-sampled reals
» Treaps
» A sampler for Galton-Watson trees

Summary

B Caliper, a separation logic for termination-preserving refinement between
probabilistic programs and probabilistic transition systems.

B To preserve termination, Caliper exploits guarded recursion which seamlessly
integrate with existing separation-logic reasoning principles.

B Probabilistic couplings for relational reasoning about probabilistic systems.
B Full mechanization in the Coq proof assistant using the Iris framework.

Thank you!

E-mail s.gregersen@nyu.edu

NYU

Presampling tapes

In our POPL24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 1 — b that “prophesizes” the outcome of future samplings.

14

Presampling tapes

In our POPL24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 1 — b that “prophesizes” the outcome of future samplings.

flip L€

14

Presampling tapes

In our POPL24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 1 — b that “prophesizes” the outcome of future samplings.

flip L€

N =
N =

true false 1 <—e€

14

Presampling tapes

In our POPL24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 1 — b that “prophesizes” the outcome of future samplings.

flip 1>e€ flip l‘-—)’b|b1|b2|...‘

N =
N =

true false 1 <—e€

14

Presampling tapes

In our POPL24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 1 — b that “prophesizes” the outcome of future samplings.

flip 1>e€ flip l‘-—)’b|b1|b2|...‘

N =
N =

true false 1<—e€ b L= -

14

Presampling tapes cont’d

Presampling, however, is just a ghost operation!

m, # mr
m—2 my P x spec(my) * 1 — b - false + rwp e {®}

1

m—: my P« spec(my) * 1 <> b-true + rwp e {®}

>P*zc—>5*spec(m)krwpe{q’)}

Presampling tapes cont’d

Presampling, however, is just a ghost operation!

m, # mr
m—2 my P x spec(my) * 1 — b - false + rwp e {®}
m—z mr P« spec(m;) = 1< b-true - rwp e {®}

>P*lr—>5*spec(m) Frwp e {d}

Two immediate benefits that we exploit:

B Eliminating later modalities “asynchronously”
B Relating one model step to multiple (non-adjacent) samplings

step(my) < unif(N) : R F Y(mg,n) € R. (spec(my) * P) — rwp n {®}

spec(m,) *>P + rwp rand N {®}

16

If Y em €Xecp(m)(m’) < r for all n then execy(m) < r.

Definition (Left-partial coupling)

Let iy € D(A) and py € D(B). A sub-distribution u € D(A X B) is a left-partial
coupling of iy and ps if

1. Va. Ypepp(ab) = pi(a)

2. Vb. Fyeqp(ab) < pz(b)
We write p1; < p if there exists a left-partial coupling of p; and ps. Given a relation
R € AX B we say p is a left-partial R-coupling if furthermore supp(y) € R. We write
11 S po : Rif there exists a left-partial R-coupling of p; and ps.

Lemma
If iy < po then Y ea pi(a) < Ypep p2(b).

(Vfo' {Vo". »

({@(")} fo"” {¥} }Ff o {¥} = @) + {P(v)} fix F o {¥}

18

