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Most of the time, we want our programs to terminate…

How do we prove it? For probabilistic programs, the argument can be quite subtle.

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

The program almost surely terminates since lim𝑛→∞1 − 1
2

𝑛 = 1.
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While successful, most existing works consider first-order languages and their
solutions apply to syntactic while loops.

But what if we were to consider a higher-order language?

Multiple ways for the program to not terminate!
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As a (somewhat extreme) example, consider

fix ≜ 𝜆𝐹 . let 𝑟 = ref (𝜆𝑥. 𝑥) in 𝑟 ← (𝜆𝑥. 𝐹 (! 𝑟 ) 𝑥); ! 𝑟
F ≜ 𝜆𝑓 . 𝜆𝑛. if𝑛 == 0 then ()

else if flip then 𝑓 (𝑛 − 1) else 𝑓 (𝑛 + 1)
walk ≜ fix F

By tying Landin’s knot, we can encode a fixed-point combinator and thus recurse.

In essence, however, the termination argument is well known.
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This work

A higher-order separation logic, Caliper, for termination-preserving refinement
between probabilistic programs and probabilistic transition systems.

For example, to show that walk(𝑛) terminates we show the refinement

walk(𝑛) � 0 1 2 3 · · ·
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As a consequence, by showing that the model terminates, so does the program.
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Caliper

Two key components:

A refinement weakest precondition rwp 𝑒 {Φ} for reasoning about programs,

A separation logic resource spec(𝑚) for tracking the current model state.

Theorem (Soundness)

If spec(𝑚) ` rwp 𝑒 {𝛷} then exec⇓(𝑚) ≤ exec⇓(𝑒).
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Caliper cont’d

The program logic satisfies the typical separation logic rules, e.g.,

∀ℓ . ℓ ↦→ 𝑣 ∗ 𝛷 (ℓ) ` rwp ref 𝑣 {𝛷} (wp-alloc)

(ℓ ↦→ 𝑣 ∗ 𝛷 (𝑣)) ∗ ℓ ↦→ 𝑣 ` rwp ! ℓ {𝛷} (wp-load)

(ℓ ↦→ 𝑤 ∗ 𝛷 ()) ∗ ℓ ↦→ 𝑣 ` rwp ℓ ← 𝑤 {𝛷} (wp-store)

rwp 𝑒
{
𝑣 . rwp 𝐾 [𝑣] {𝛷}

}
` rwp 𝐾 [𝑒] {𝛷} (wp-bind)

...
...

…but there is no rule for reasoning about recursion or loops!
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Caliper cont’d

Instead, Caliper makes use of guarded recursion with the later modality and, in
particular, the Löb induction principle.

⊲ 𝑃 ` 𝑃
` 𝑃

Key idea

By only allowing later modalities to be eliminated when the model makes a
transition, we preserve termination across the refinement relation.
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Later elimination
The simplest case is when the model makes a deterministic transition:

𝑚1 →1 𝑚2 spec(𝑚2) ∗ 𝑃 ` rwp 𝑒 {𝛷}
spec(𝑚1) ∗ ⊲ 𝑃 ` rwp 𝑒 {𝛷}

For probabilistic transitions, Caliper satisfies a range of coupling rules in the style
of probabilistic relational Hoare logic (pRHL), e.g.,

𝑚⊥ ≠𝑚>
𝑚 → 1

2 𝑚⊥ spec(𝑚⊥) ∗ 𝑃 ` rwp 𝐾 [false] {𝛷}
𝑚 → 1

2 𝑚> spec(𝑚>) ∗ 𝑃 ` rwp 𝐾 [true] {𝛷}
spec(𝑚) ∗ ⊲ 𝑃 ` rwp 𝐾 [ flip ] {𝛷}
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Example

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end
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Takeaways

The approach taken in Caliper exploits three key ingredients:

Higher-order separation logic for powerful modular reasoning

Guarded recursion for termination-preserving refinement reasoning

Probabilistic couplings for “aligning” probabilistic transitions

Well-tested abstractions that scale to reasoning about complex programs!
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More in the paper

Semantic model and soundness of the logic.

More general and expressive coupling rules (uniform sampling), asynchronous
couplings for flexible coupling-based reasoning.
A series of case studies showcasing the approach and how it supports
compositional separation-logic reasoning.
▶ A higher-order list generator
▶ Lazily-sampled reals
▶ Treaps
▶ A sampler for Galton-Watson trees
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Summary

Caliper, a separation logic for termination-preserving refinement between
probabilistic programs and probabilistic transition systems.

To preserve termination, Caliper exploits guarded recursion which seamlessly
integrate with existing separation-logic reasoning principles.

Probabilistic couplings for relational reasoning about probabilistic systems.

Full mechanization in the Coq proof assistant using the Iris framework.

Thank you!
E-mail s.gregersen@nyu.edu



Presampling tapes

In our POPL’24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 𝜄 ↩→ ®𝑏 that “prophesizes” the outcome of future samplings.

flip 𝜄 ↩→𝜖

true false 𝜄 ↩→𝜖

1
2

1
2

flip 𝜄 ↩→ 𝑏 𝑏1 𝑏2 . . .

𝑏 𝜄 ↩→ 𝑏1 𝑏2 . . .

1
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Presampling tapes cont’d
Presampling, however, is just a ghost operation!

𝑚⊥ ≠𝑚>
𝑚 → 1

2 𝑚⊥ 𝑃 ∗ spec(𝑚𝑓 ) ∗ 𝜄 ↩→ ®𝑏 · false ` rwp 𝑒 {𝛷}
𝑚 → 1

2 𝑚> 𝑃 ∗ spec(𝑚𝑡 ) ∗ 𝜄 ↩→ ®𝑏 · true ` rwp 𝑒 {𝛷}
⊲ 𝑃 ∗ 𝜄 ↩→ ®𝑏 ∗ spec(𝑚) ` rwp 𝑒 {𝛷}

Two immediate benefits that we exploit:

Eliminating later modalities “asynchronously”

Relating one model step to multiple (non-adjacent) samplings
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step(𝑚1) ≲ unif (𝑁 ) : 𝑅 ` ∀(𝑚2, 𝑛) ∈ 𝑅. (spec(𝑚2) ∗ 𝑃) ∗ rwp 𝑛 {𝛷}
spec(𝑚1) ∗ ⊲ 𝑃 ` rwp rand𝑁 {𝛷}
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Lemma
If

∑
𝑚′∈𝑀 exec𝑛 (𝑚)(𝑚′) ≤ 𝑟 for all 𝑛 then exec⇓(𝑚) ≤ 𝑟 .

Definition (Left-partial coupling)

Let 𝜇1 ∈ D(𝐴) and 𝜇2 ∈ D(𝐵). A sub-distribution 𝜇 ∈ D(𝐴 × 𝐵) is a left-partial
coupling of 𝜇1 and 𝜇2 if

1. ∀𝑎. ∑𝑏∈𝐵 𝜇 (𝑎, 𝑏) = 𝜇1(𝑎)
2. ∀𝑏. ∑𝑎∈𝐴 𝜇 (𝑎,𝑏) ≤ 𝜇2(𝑏)
We write 𝜇1 ≲ 𝜇2 if there exists a left-partial coupling of 𝜇1 and 𝜇2. Given a relation
𝑅 ⊆ 𝐴 × 𝐵 we say 𝜇 is a left-partial 𝑅-coupling if furthermore supp(𝜇) ⊆ 𝑅. We write
𝜇1 ≲ 𝜇2 : 𝑅 if there exists a left-partial 𝑅-coupling of 𝜇1 and 𝜇2.

Lemma
If 𝜇1 ≲ 𝜇2 then

∑
𝑎∈𝐴 𝜇1(𝑎) ≤

∑
𝑏∈𝐵 𝜇2(𝑏).
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(
∀𝑓 , 𝑣 ′.

{
∀𝑣 ′′. ⊲

(
{𝛷 (𝑣 ′′)} 𝑓 𝑣 ′′ {Ψ}

)}
𝐹 𝑓 𝑣 ′ {Ψ} ∗𝛷 (𝑣 ′)

)
` {𝛷 (𝑣)} fix 𝐹 𝑣 {Ψ}
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