
Almost-Sure Termination
by Guarded Refinement

Simon Oddershede Gregersen1

joint work with
Alejandro Aguirre2 , Philipp G. Haselwarter2 , Joseph Tassarotti1 , and Lars Birkedal2

1New York University 2Aarhus University

Most of the time, we want our programs to terminate…

How do we prove it? For probabilistic programs, the argument can be quite subtle.

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

The program almost surely terminates since lim𝑛→∞1 − 1
2

𝑛 = 1.

1

Most of the time, we want our programs to terminate…

How do we prove it?

For probabilistic programs, the argument can be quite subtle.

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

The program almost surely terminates since lim𝑛→∞1 − 1
2

𝑛 = 1.

1

Most of the time, we want our programs to terminate…

How do we prove it? For probabilistic programs, the argument can be quite subtle.

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

The program almost surely terminates since lim𝑛→∞1 − 1
2

𝑛 = 1.

1

Most of the time, we want our programs to terminate…

How do we prove it? For probabilistic programs, the argument can be quite subtle.

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

The program almost surely terminates since lim𝑛→∞1 − 1
2

𝑛 = 1.

1

Most of the time, we want our programs to terminate…

How do we prove it? For probabilistic programs, the argument can be quite subtle.

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

The program almost surely terminates since lim𝑛→∞1 − 1
2

𝑛 = 1.

1

2

2

2

While successful, most existing works consider first-order languages and their
solutions apply to syntactic while loops.

But what if we were to consider a higher-order language?

Multiple ways for the program to not terminate!

3

While successful, most existing works consider first-order languages and their
solutions apply to syntactic while loops.

But what if we were to consider a higher-order language?

Multiple ways for the program to not terminate!

3

While successful, most existing works consider first-order languages and their
solutions apply to syntactic while loops.

But what if we were to consider a higher-order language?

Multiple ways for the program to not terminate!

3

As a (somewhat extreme) example, consider

fix ≜ 𝜆𝐹 . let 𝑟 = ref (𝜆𝑥. 𝑥) in 𝑟 ← (𝜆𝑥. 𝐹 (! 𝑟) 𝑥); ! 𝑟
F ≜ 𝜆𝑓 . 𝜆𝑛. if𝑛 == 0 then ()

else if flip then 𝑓 (𝑛 − 1) else 𝑓 (𝑛 + 1)
walk ≜ fix F

By tying Landin’s knot, we can encode a fixed-point combinator and thus recurse.

In essence, however, the termination argument is well known.

0 1 2 3 · · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

4

As a (somewhat extreme) example, consider

fix ≜ 𝜆𝐹 . let 𝑟 = ref (𝜆𝑥. 𝑥) in 𝑟 ← (𝜆𝑥. 𝐹 (! 𝑟) 𝑥); ! 𝑟
F ≜ 𝜆𝑓 . 𝜆𝑛. if𝑛 == 0 then ()

else if flip then 𝑓 (𝑛 − 1) else 𝑓 (𝑛 + 1)
walk ≜ fix F

By tying Landin’s knot, we can encode a fixed-point combinator and thus recurse.

In essence, however, the termination argument is well known.

0 1 2 3 · · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

4

This work

A higher-order separation logic, Caliper, for termination-preserving refinement
between probabilistic programs and probabilistic transition systems.

For example, to show that walk(𝑛) terminates we show the refinement

walk(𝑛) � 0 1 2 3 · · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

As a consequence, by showing that the model terminates, so does the program.

5

Caliper

Two key components:

A refinement weakest precondition rwp 𝑒 {Φ} for reasoning about programs,

A separation logic resource spec(𝑚) for tracking the current model state.

Theorem (Soundness)

If spec(𝑚) ` rwp 𝑒 {𝛷} then exec⇓(𝑚) ≤ exec⇓(𝑒).

6

Caliper cont’d

The program logic satisfies the typical separation logic rules, e.g.,

∀ℓ . ℓ ↦→ 𝑣 ∗ 𝛷 (ℓ) ` rwp ref 𝑣 {𝛷} (wp-alloc)

(ℓ ↦→ 𝑣 ∗ 𝛷 (𝑣)) ∗ ℓ ↦→ 𝑣 ` rwp ! ℓ {𝛷} (wp-load)

(ℓ ↦→ 𝑤 ∗ 𝛷 ()) ∗ ℓ ↦→ 𝑣 ` rwp ℓ ← 𝑤 {𝛷} (wp-store)

rwp 𝑒
{
𝑣 . rwp 𝐾 [𝑣] {𝛷}

}
` rwp 𝐾 [𝑒] {𝛷} (wp-bind)

...
...

…but there is no rule for reasoning about recursion or loops!

7

Caliper cont’d

Instead, Caliper makes use of guarded recursion with the later modality and, in
particular, the Löb induction principle.

⊲ 𝑃 ` 𝑃
` 𝑃

Key idea

By only allowing later modalities to be eliminated when the model makes a
transition, we preserve termination across the refinement relation.

8

Caliper cont’d

Instead, Caliper makes use of guarded recursion with the later modality and, in
particular, the Löb induction principle.

⊲ 𝑃 ` 𝑃
` 𝑃

Key idea

By only allowing later modalities to be eliminated when the model makes a
transition, we preserve termination across the refinement relation.

8

Later elimination
The simplest case is when the model makes a deterministic transition:

𝑚1 →1 𝑚2 spec(𝑚2) ∗ 𝑃 ` rwp 𝑒 {𝛷}
spec(𝑚1) ∗ ⊲ 𝑃 ` rwp 𝑒 {𝛷}

For probabilistic transitions, Caliper satisfies a range of coupling rules in the style
of probabilistic relational Hoare logic (pRHL), e.g.,

𝑚⊥ ≠𝑚>
𝑚 → 1

2 𝑚⊥ spec(𝑚⊥) ∗ 𝑃 ` rwp 𝐾 [false] {𝛷}
𝑚 → 1

2 𝑚> spec(𝑚>) ∗ 𝑃 ` rwp 𝐾 [true] {𝛷}
spec(𝑚) ∗ ⊲ 𝑃 ` rwp 𝐾 [flip] {𝛷}

9

Later elimination
The simplest case is when the model makes a deterministic transition:

𝑚1 →1 𝑚2 spec(𝑚2) ∗ 𝑃 ` rwp 𝑒 {𝛷}
spec(𝑚1) ∗ ⊲ 𝑃 ` rwp 𝑒 {𝛷}

For probabilistic transitions, Caliper satisfies a range of coupling rules in the style
of probabilistic relational Hoare logic (pRHL), e.g.,

𝑚⊥ ≠𝑚>
𝑚 → 1

2 𝑚⊥ spec(𝑚⊥) ∗ 𝑃 ` rwp 𝐾 [false] {𝛷}
𝑚 → 1

2 𝑚> spec(𝑚>) ∗ 𝑃 ` rwp 𝐾 [true] {𝛷}
spec(𝑚) ∗ ⊲ 𝑃 ` rwp 𝐾 [flip] {𝛷}

9

Example

let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

� > ⊥

1
2

1
2

10

Example
Goal

rwp
©«
let 𝑟 = ref true in

while ! 𝑟 do
𝑟 ← flip

end

ª®®®¬ {_. spec(⊥)}
Assumptions

spec(>)

10

Example
Goal

rwp

(
while ! ℓ do
ℓ ← flip

end

)
{_. spec(⊥)}

Assumptions

spec(>)
ℓ ↦→ true

⊲

(
spec(>) ∗ ℓ ↦→ true ∗

rwp . . . {. . .}

)

10

Example
Goal

rwp

(
while ! ℓ do
ℓ ← flip

end

)
{_. spec(⊥)}

Assumptions

spec(>)
ℓ ↦→ true

⊲

(
spec(>) ∗ ℓ ↦→ true ∗

rwp . . . {. . .}

)

10

Example
Goal

rwp

©«
if ! ℓ then

ℓ ← flip;

while ! ℓ do
ℓ ← flip

end

ª®®®®®¬
{_. spec(⊥)}

Assumptions

spec(>)
ℓ ↦→ true

⊲

(
spec(>) ∗ ℓ ↦→ true ∗

rwp . . . {. . .}

)

10

Example
Goal

rwp
©«
ℓ ← flip;

while ! ℓ do
ℓ ← flip

end

ª®®®¬ {_. spec(⊥)}

𝑚⊥ ≠𝑚>
𝑚 → 1

2 𝑚⊥ spec(𝑚⊥) ∗ 𝑃 ` rwp 𝐾 [false] {𝛷 }
𝑚 → 1

2 𝑚> spec(𝑚>) ∗ 𝑃 ` rwp 𝐾 [true] {𝛷 }
spec(𝑚) ∗ ⊲𝑃 ` rwp 𝐾 [flip] {𝛷 }

Assumptions

spec(>)
ℓ ↦→ true

⊲

(
spec(>) ∗ ℓ ↦→ true ∗

rwp . . . {. . .}

)

10

Example
Goal

rwp
©«
ℓ ← flip;

while ! ℓ do
ℓ ← flip

end

ª®®®¬ {_. spec(⊥)}
𝑚⊥ ≠𝑚>

𝑚 → 1
2 𝑚⊥ spec(𝑚⊥) ∗ 𝑃 ` rwp 𝐾 [false] {𝛷 }

𝑚 → 1
2 𝑚> spec(𝑚>) ∗ 𝑃 ` rwp 𝐾 [true] {𝛷 }
spec(𝑚) ∗ ⊲𝑃 ` rwp 𝐾 [flip] {𝛷 }

Assumptions

spec(>)
ℓ ↦→ true

⊲

(
spec(>) ∗ ℓ ↦→ true ∗

rwp . . . {. . .}

)

10

Example
Goal

rwp
©«
ℓ ← 𝑏;

while ! ℓ do
ℓ ← flip

end

ª®®®¬ {_. spec(⊥)}
𝑚⊥ ≠𝑚>

𝑚 → 1
2 𝑚⊥ spec(𝑚⊥) ∗ 𝑃 ` rwp 𝐾 [false] {𝛷 }

𝑚 → 1
2 𝑚> spec(𝑚>) ∗ 𝑃 ` rwp 𝐾 [true] {𝛷 }
spec(𝑚) ∗ ⊲𝑃 ` rwp 𝐾 [flip] {𝛷 }

Assumptions

spec(if 𝑏 then > else ⊥)
ℓ ↦→ true(
spec(>) ∗ ℓ ↦→ true ∗

rwp . . . {. . .}

)

10

Example
Goal

rwp

(
while ! ℓ do
ℓ ← flip

end

)
{_. spec(⊥)}

Assumptions

spec(if 𝑏 then > else ⊥)
ℓ ↦→ 𝑏(
spec(>) ∗ ℓ ↦→ true ∗

rwp . . . {. . .}

)

10

Takeaways

The approach taken in Caliper exploits three key ingredients:

Higher-order separation logic for powerful modular reasoning

Guarded recursion for termination-preserving refinement reasoning

Probabilistic couplings for “aligning” probabilistic transitions

Well-tested abstractions that scale to reasoning about complex programs!

11

More in the paper

Semantic model and soundness of the logic.

More general and expressive coupling rules (uniform sampling), asynchronous
couplings for flexible coupling-based reasoning.
A series of case studies showcasing the approach and how it supports
compositional separation-logic reasoning.
▶ A higher-order list generator
▶ Lazily-sampled reals
▶ Treaps
▶ A sampler for Galton-Watson trees

12

Summary

Caliper, a separation logic for termination-preserving refinement between
probabilistic programs and probabilistic transition systems.

To preserve termination, Caliper exploits guarded recursion which seamlessly
integrate with existing separation-logic reasoning principles.

Probabilistic couplings for relational reasoning about probabilistic systems.

Full mechanization in the Coq proof assistant using the Iris framework.

Thank you!
E-mail s.gregersen@nyu.edu

Presampling tapes

In our POPL’24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 𝜄 ↩→ ®𝑏 that “prophesizes” the outcome of future samplings.

flip 𝜄 ↩→𝜖

true false 𝜄 ↩→𝜖

1
2

1
2

flip 𝜄 ↩→ 𝑏 𝑏1 𝑏2 . . .

𝑏 𝜄 ↩→ 𝑏1 𝑏2 . . .

1

14

Presampling tapes

In our POPL’24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 𝜄 ↩→ ®𝑏 that “prophesizes” the outcome of future samplings.

flip 𝜄 ↩→𝜖

true false 𝜄 ↩→𝜖

1
2

1
2

flip 𝜄 ↩→ 𝑏 𝑏1 𝑏2 . . .

𝑏 𝜄 ↩→ 𝑏1 𝑏2 . . .

1

14

Presampling tapes

In our POPL’24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 𝜄 ↩→ ®𝑏 that “prophesizes” the outcome of future samplings.

flip 𝜄 ↩→𝜖

true false 𝜄 ↩→𝜖

1
2

1
2

flip 𝜄 ↩→ 𝑏 𝑏1 𝑏2 . . .

𝑏 𝜄 ↩→ 𝑏1 𝑏2 . . .

1

14

Presampling tapes

In our POPL’24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 𝜄 ↩→ ®𝑏 that “prophesizes” the outcome of future samplings.

flip 𝜄 ↩→𝜖

true false 𝜄 ↩→𝜖

1
2

1
2

flip 𝜄 ↩→ 𝑏 𝑏1 𝑏2 . . .

𝑏 𝜄 ↩→ 𝑏1 𝑏2 . . .

1

14

Presampling tapes

In our POPL’24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 𝜄 ↩→ ®𝑏 that “prophesizes” the outcome of future samplings.

flip 𝜄 ↩→𝜖

true false 𝜄 ↩→𝜖

1
2

1
2

flip 𝜄 ↩→ 𝑏 𝑏1 𝑏2 . . .

𝑏 𝜄 ↩→ 𝑏1 𝑏2 . . .

1

14

Presampling tapes cont’d
Presampling, however, is just a ghost operation!

𝑚⊥ ≠𝑚>
𝑚 → 1

2 𝑚⊥ 𝑃 ∗ spec(𝑚𝑓) ∗ 𝜄 ↩→ ®𝑏 · false ` rwp 𝑒 {𝛷}
𝑚 → 1

2 𝑚> 𝑃 ∗ spec(𝑚𝑡) ∗ 𝜄 ↩→ ®𝑏 · true ` rwp 𝑒 {𝛷}
⊲ 𝑃 ∗ 𝜄 ↩→ ®𝑏 ∗ spec(𝑚) ` rwp 𝑒 {𝛷}

Two immediate benefits that we exploit:

Eliminating later modalities “asynchronously”

Relating one model step to multiple (non-adjacent) samplings

15

Presampling tapes cont’d
Presampling, however, is just a ghost operation!

𝑚⊥ ≠𝑚>
𝑚 → 1

2 𝑚⊥ 𝑃 ∗ spec(𝑚𝑓) ∗ 𝜄 ↩→ ®𝑏 · false ` rwp 𝑒 {𝛷}
𝑚 → 1

2 𝑚> 𝑃 ∗ spec(𝑚𝑡) ∗ 𝜄 ↩→ ®𝑏 · true ` rwp 𝑒 {𝛷}
⊲ 𝑃 ∗ 𝜄 ↩→ ®𝑏 ∗ spec(𝑚) ` rwp 𝑒 {𝛷}

Two immediate benefits that we exploit:

Eliminating later modalities “asynchronously”

Relating one model step to multiple (non-adjacent) samplings

15

step(𝑚1) ≲ unif (𝑁) : 𝑅 ` ∀(𝑚2, 𝑛) ∈ 𝑅. (spec(𝑚2) ∗ 𝑃) ∗ rwp 𝑛 {𝛷}
spec(𝑚1) ∗ ⊲ 𝑃 ` rwp rand𝑁 {𝛷}

16

Lemma
If

∑
𝑚′∈𝑀 exec𝑛 (𝑚)(𝑚′) ≤ 𝑟 for all 𝑛 then exec⇓(𝑚) ≤ 𝑟 .

Definition (Left-partial coupling)

Let 𝜇1 ∈ D(𝐴) and 𝜇2 ∈ D(𝐵). A sub-distribution 𝜇 ∈ D(𝐴 × 𝐵) is a left-partial
coupling of 𝜇1 and 𝜇2 if

1. ∀𝑎. ∑𝑏∈𝐵 𝜇 (𝑎, 𝑏) = 𝜇1(𝑎)
2. ∀𝑏. ∑𝑎∈𝐴 𝜇 (𝑎,𝑏) ≤ 𝜇2(𝑏)
We write 𝜇1 ≲ 𝜇2 if there exists a left-partial coupling of 𝜇1 and 𝜇2. Given a relation
𝑅 ⊆ 𝐴 × 𝐵 we say 𝜇 is a left-partial 𝑅-coupling if furthermore supp(𝜇) ⊆ 𝑅. We write
𝜇1 ≲ 𝜇2 : 𝑅 if there exists a left-partial 𝑅-coupling of 𝜇1 and 𝜇2.

Lemma
If 𝜇1 ≲ 𝜇2 then

∑
𝑎∈𝐴 𝜇1(𝑎) ≤

∑
𝑏∈𝐵 𝜇2(𝑏).

17

(
∀𝑓 , 𝑣 ′.

{
∀𝑣 ′′. ⊲

(
{𝛷 (𝑣 ′′)} 𝑓 𝑣 ′′ {Ψ}

)}
𝐹 𝑓 𝑣 ′ {Ψ} ∗𝛷 (𝑣 ′)

)
` {𝛷 (𝑣)} fix 𝐹 𝑣 {Ψ}

18

