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Most of the time, we want our programs to terminate...
How do we prove it? For probabilistic programs, the argument can be quite subtle.

letr = reftruein

while ! r do
r « flip
end

The program almost surely terminates since lim, .1 —
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We present a new proof rule for proving almost-sure termination of probabilistic programs, including those
that contain demonic non-determinism.
An important question for a probablllshc program is whether the probability mass of all its diverging runs

is zero, that is that it terminates “almost surely”. Provmg that can be hard, and this paper presents a new
thod for dai Te \H A tlar do il if 4]

THEOREM 4.1 (NEW VARIANT RULE FOR Loops). Let I, G c3 be predwates let V: Z—»R>o bea
non-negative real-valued function not necessarily bounded; let p (for “probability”) be a fixed function
of type R0—(0, 1]; let d (for “decrease”) be a fixed function of type R>o—Rq, both of them antitone
on strictly positive arguments; and let Com be a pGCL program.

Suppose the following four conditions hold:

(i) 1 is a standard invariant of while (G) {Com} , and

(i) GAI=> V>0, and
(iii) For any ReR, we have p(R) - [GAI AV=R] < wp.Com.[V < R-d(R)], and
(iv) V satisfies the “super-martingale” condition that

for any constant H in R we have [GATI]- (HeV) < wp.Com.(HeV),

where HOV is defined as max {H-V, 0}.
Then we have [I] < wp.while (G) {Com}.1.
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As a (somewhat extreme) example, consider

fix = AF. letr =ref (Ax.x)inr « (Ax.F (Ir) x); !'r
F2Af. An.if n == 0then ()
elseif flip thenf (n—1)else f (n+1)

walk = fix F
By tying Landin’s knot, we can encode a fixed-point combinator and thus recurse.

In essence, however, the termination argument is well known.

1 1 1
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This work

A higher-order separation logic, Caliper, for termination-preserving refinement
between probabilistic programs and probabilistic transition systems.

For example, to show that walk(n) terminates we show the refinement

walk(n) < QQQ

1
2

As a consequence, by showing that the model terminates, so does the program.



Caliper

Two key components:

B A refinement weakest precondition rwp e {®} for reasoning about programs,
B A separation logic resource spec(m) for tracking the current model state.

Theorem (Soundness)

If spec(m) + rwp e {®} then exec|(m) < execy(e).



Caliper cont’d

The program logic satisfies the typical separation logic rules, e.g.,

Vet v — &) +rwp refo{d} (wp-alloc)
(L0 — D) x> orrwp ! £{D} (wp-load)
(> w—®())xl>oFrwpfl«— w{d} (wp-store)
rwp e {o.rwp K[v] {®}} + rwp K[e] {®} (wp-bind)

..but there is no rule for reasoning about recursion or loops!
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Instead, Caliper makes use of guarded recursion with the later modality and, in
particular, the L6b induction principle.
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Instead, Caliper makes use of guarded recursion with the later modality and, in
particular, the L6b induction principle.

>P+P
+ P

Key idea

By only allowing later modalities to be eliminated when the model makes a
transition, we preserve termination across the refinement relation.
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Later elimination

The simplest case is when the model makes a deterministic transition:

m; —* my spec(my) * P+ rwp e {®}

spec(m;) * »P+rwpe{d}

For probabilistic transitions, Caliper satisfies a range of coupling rules in the style
of probabilistic relational Hoare logic (pRHL), e.g.,

m, # mr
m—: m, spec(m,) * P+ rwp K|[false] {®}
m—?2 mr spec(mr) = P+ rwp K[true] {®}
spec(m) = > P+ rwp K[ flip ] {®}
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Goal Assumptions
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Example

Goal Assumptions
t — flip; spec(T)
rwp while! £ do { ) SpeC(J_)} f — true
t « flip -

spec(T) = £ > true —x
rwp ... {...}

end

m, # mr
m—?2 my spec(m_) = P+ rwp K|[false] {&}
m—3 mr spec(m+) = P+ rwp K|[true] {®}
spec(m) = > P+ rwp K| flip | {®}




Example

Goal
{ «— b;
rwp W?E!fﬁigo {_.spec(L)}
end
m, # mr

m—3 m, spec(m_) = P+ rwp K|[false] {&}
m—3 mr spec(m+) = P+ rwp K|[true] {®}

spec(m) = > P+ rwp K| flip | {®}

Assumptions

spec(if b then T else 1)
{ — true

spec(T) * £ > true —x
rwp ... {...}



Example
Goal

while ! £ do
rwp (

¢ — flip ) {_.spec(L1)}
end

Assumptions

spec(if b then T else 1)
b
spec(T) * £ > true —x
rwp ... {...}



Takeaways

The approach taken in Caliper exploits three key ingredients:

B Higher-order separation logic for powerful modular reasoning
B Guarded recursion for termination-preserving refinement reasoning
B Probabilistic couplings for “aligning” probabilistic transitions

Well-tested abstractions that scale to reasoning about complex programs!



More in the paper

B Semantic model and soundness of the logic.

B More general and expressive coupling rules (uniform sampling), asynchronous
couplings for flexible coupling-based reasoning.

B A series of case studies showcasing the approach and how it supports
compositional separation-logic reasoning.
» A higher-order list generator
P Lazily-sampled reals
» Treaps
» A sampler for Galton-Watson trees



Summary

B Caliper, a separation logic for termination-preserving refinement between
probabilistic programs and probabilistic transition systems.

B To preserve termination, Caliper exploits guarded recursion which seamlessly
integrate with existing separation-logic reasoning principles.

B Probabilistic couplings for relational reasoning about probabilistic systems.
B Full mechanization in the Coq proof assistant using the Iris framework.

Thank you!

E-mail s.gregersen@nyu.edu

NYU



Presampling tapes

In our POPL24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 1 — b that “prophesizes” the outcome of future samplings.
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Presampling tapes

In our POPL24 paper, we introduced presampling tapes to alleviate the
asynchronous nature of relational reasoning about higher-order programs.

Key idea: a resource 1 — b that “prophesizes” the outcome of future samplings.

flip 1>e€ flip l‘-—)’b|b1|b2|...‘

N =
N =

true false 1<—e€ b L= -
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Presampling tapes cont’d

Presampling, however, is just a ghost operation!

m, # mr
m—2 my P x spec(my) * 1 — b - false + rwp e {®}

1

m—: my P« spec(my) * 1 <> b-true + rwp e {®}

>P*zc—>5*spec(m)krwpe{q’)}



Presampling tapes cont’d

Presampling, however, is just a ghost operation!

m, # mr
m—2 my P x spec(my) * 1 — b - false + rwp e {®}
m—z mr P« spec(m;) = 1< b-true - rwp e {®}

>P*lr—>5*spec(m) Frwp e {d}

Two immediate benefits that we exploit:

B Eliminating later modalities “asynchronously”
B Relating one model step to multiple (non-adjacent) samplings



step(my) < unif(N) : R F Y(mg,n) € R. (spec(my) * P) — rwp n {®}

spec(m,) *>P + rwp rand N {®}

16



If Y em €Xecp(m)(m’) < r for all n then execy(m) < r.

Definition (Left-partial coupling)

Let iy € D(A) and py € D(B). A sub-distribution u € D(A X B) is a left-partial
coupling of iy and ps if

1. Va. Ypepp(ab) = pi(a)

2. Vb. Fyeqp(ab) < pz(b)
We write p1; < p if there exists a left-partial coupling of p; and ps. Given a relation
R € AX B we say p is a left-partial R-coupling if furthermore supp(y) € R. We write
11 S po : Rif there exists a left-partial R-coupling of p; and ps.

Lemma
If iy < po then Y ea pi(a) < Ypep p2(b).



(Vfo' {Vo". »

({@(")} fo"” {¥} }Ff o {¥} = @) + {P(v)} fix F o {¥}
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