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Implementations Models
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How do we connect realistic implementations to more abstract models?

Fork-based (node-local) concurrency

Socket-based communication with serialization

Higher-order functions, higher-order state, …
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This work

Trillium A higher-order separation logic framework for showing different
notions of trace refinement between programs and models.

We consider two instantiations of the framework:

Aneris for reasoning about safety properties of implementations of
distributed systems communicating over an unreliable network.

Fairis for reasoning about termination of fine-grained concurrent programs
under fair scheduling assumptions.
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Trillium

A language-generic framework for showing lockstep simulation, built on top of
the Iris separation logic framework and mechanized in the Coq proof assistant.

𝛿1

𝑒1 𝑒2

𝛿2

We will weaken lockstep simulation through model constructions.
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Key Ideas

1. Use a program logic {𝑃} 𝑒 {𝑄} to reason about the program.

2. Use a separation logic resource Model(𝛿) to embed the current model state in
the logic and restrict its progression to preserve properties of interest.

3. Encode the refinement mapping using Iris invariant assertions 𝑃 .

𝛿1

𝑒1 𝑒2

𝛿2
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Example

To show that 𝑒 ≜ while true do ℓ ← ! ℓ + 1 end refines the state-transition system

0 1 2 3 . . .

one shows a specification of the shape

{∃𝑛. ℓ ↦→ 𝑛 ∗Model(𝑛) } 𝑒 {𝑄} .

But lockstep simulation—while sound—is much too restrictive, e.g.,

𝛿 ⇀ 𝛿 ′

{Model(𝛿)}𝑛 +𝑚 {𝑣 . 𝑣 = (𝑛 +𝑚) ∗Model(𝛿 ′)}
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Safety Properties
Models are (often) simpler than implementations so stuttering is necessary.

To preserve safety properties, it is sound to allow unrestricted stuttering.

𝑒1

𝛿

𝑒2

That is, lockstep simulation of the reflexive closure of the model.

0 1 2 3 . . .
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Aneris

We “bake in” the reflexive closure, instantiate Trillium with AnerisLang—an ML-like
language with UDP communication primitives—and recover Aneris [ESOP’20], a
distributed separation logic.

All existing specifications and reasoning principles still hold, with the addition of
just one rule for progressing the model.

{𝑃} 𝑒 {𝑄} 𝛿 ⇀ 𝛿 ′ Atomic(𝑒)
{𝑃 ∗Model(𝛿)} 𝑒 {𝑄 ∗Model(𝛿 ′)}
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Single-Decree Paxos by Refinement

Theorem (Consistency)

If 𝛿init ⇀∗ 𝛿 ′SDP and both Chosen(𝛿 ′SDP, 𝑣1) and Chosen(𝛿 ′SDP, 𝑣2) then 𝑣1 = 𝑣2.
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…and show node- and role-local specifications

{ 𝐼SDP ∗ . . .} acceptor 𝐿 𝑎 {. . .}
{ 𝐼SDP ∗ . . .} proposer 𝐴 𝑠 𝑏 𝑣 {. . .}
{ 𝐼SDP ∗ . . .} learner 𝑠 𝑎 {. . .}

where

𝐼SDP ≜ ∃𝛿SDP.Model(𝛿SDP) ∗ PaxosRes• (𝛿SDP) ∗ BallotCoh(𝛿SDP)

Takeaway: the invariant is quite simple and only concerned with refinement!

Putting everything together gives us consistency for all program traces.
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Benefits
1. No need to come up with a new consensus proof.

2. The refinement proof requires almost no advanced ghost state usage.

3. As the model is embedded as a resource in the logic, we can internalize
properties of the model while proving specifications

{𝑃 ∗ 𝑣1 = 𝑣2} 𝑒 {𝑄}
{𝑃 ∗ Chosen(𝑣1) ∗ Chosen(𝑣2)} 𝑒 {𝑄}

which allows us to verify clients, e.g.,

let client addr =
// ...
let v1 = client_deser m1 in
let v2 = client_deser m2 in
assert (v1 == v2); v1.
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Liveness Properties

To preserve liveness properties, unrestricted stuttering is unsound.

Example

The program while true do skip end refines (using unrestricted stuttering)

0 1 2 3 . . .

but “the value of the counter is eventually 3” is obviously not preserved.

We can only permit finite stuttering.
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Liveness Properties
Rather than adding self-loops, we allow finite stuttering through what essentially
corresponds to lockstep simulation with finite unrollings of self-loops.
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Fair Termination
To talk about fairness of model traces, we consider labeled transitions systems
where labels denote abstract roles.

To preserve fair termination, the simulation relation also has to preserve fairness.

Fair(𝜏prog) Term(𝜏prog)

Fair(𝜏model) Term(𝜏model)

⪯

This is achieved by making sure roles do not get “starved”.
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Fairis

Given an (LTS) modelM , the Fairis logic exploits a Fuel(M) construction that
enforces finite stuttering for all roles.

Each thread id is associated with a set of roles, each with an amount of “fuel”,

If a thread stutters, the fuel of all its roles are decremented, and

If a thread takes a step inM for role 𝜌 , then 𝜌 is refueled.

The Fairis logic manages the complexity using a resource

tid �⇒ {𝜌1 ↦→ f1, . . . , 𝜌𝑛 ↦→ f𝑛}

together with the Model(𝛿) resource for the user-chosen modelM .
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Summary

Trillium A higher-order separation logic framework for showing trace
refinement between programs and models.

Aneris An instantiation of Trillium for reasoning about distributed systems.
– Single-decree Paxos refines its TLA+ model.

Fairis An instantiation of Trillium for proving termination of fine-grained
concurrent programs under fair scheduling assumptions.

Thank you!



Future Work

Fairis applies to (non-distributed) concurrent programs—fairness of distributed
systems traces is a bit more subtle.

Explore more constructions at the model level to allow for more modularity.

More high-level reasoning principles for liveness reasoning.



Remark

Logics (like Iris) based on step indexing fundamentally cannot prove liveness
properties—at least directly.

The Fairis approach sidesteps this issue entirely.

No (entirely) free lunch: we have a “relative image-finiteness requirement” for
the simulation relation. In practice, it has not (yet?) been an obstacle, but the
restriction can be lifted with transfinite step indexing.


