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How can Alice securely outsource work to Bob?

The operations of an authenticated data structure can be carried out by Bob,
but (efficiently) verified by, e.g., Alice!

This is done by having Bob produce a compact proof that Alice can check.

ADSs allow outsourcing data storage and processing
tasks to untrusted servers without loss of integrity.



Example: Merkle Tree

where hidenotes the hash of tj/s;



Example: Merkle Tree (proven

lookup([R, L], to) =




Example: Merkle Tree (proven

lookup([R, L], to) =




Example: Merkle Tree (proven

lookup([R, L], to) =




Example: Merkle Tree (proven

lookup([R, L], to) =
(L




Example: Merkle Tree (proven

lookup([R, L], to) =
(L




Example: Merkle Tree (proven

lookup([R, L], to) =
(L




Example: Merkle Tree (proven

lookup([R, L], to) =
([h1, he




Example: Merkle Tree (proven

lookup([R, L], to) =
([h1, he




Example: Merkle Tree (proven

lookup([R, L], to) =
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Example: Merkle Tree (verifier)

ho' = hash(hi+ h»)
lookup([R, L], to) =

([h1, he, s5], s5)

ho = hash(hs + he)

hs = hash(ss)




Example: Merkle Tree (verifier)

ho' = hash(hi+ h»)
lookup([R, L], to) =

([h1, he, s5], s5)

hs = hash(ss)
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Miller et al. realized that the prover and verifier
can be compiled from a single implementation.

prover
verifier

“Ideal”

Authenticated Data Structures, Generically

Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi
University of Maryland, College Park, USA

Abstract

An authenticated data structure (ADS) is a data structure whose
operations can be carried out by an untrusted prover, the results of
which a verifier can efficiently check as authentic. This is done
by having the prover produce a compact proof that the verifier
can check along with each operation’s result. ADSs thus support
outsourcing data maintenance and processing tasks to untrusted
servers without loss of integrity. Past work on ADSs has focused
on particular data structures (or limited classes of data structures),
one at a time, often with support only for particular operations.

This paper presents a generic method, using a simple exten-
sion to a ML-like functional programming language we call \e
(lambda-auth), with which one can program authenticated oper-
ations over any data structure defined by standard type construc-
tors, including recursive types, sums, and products. The program-
mer writes the data structure largely as usual and it is compiled to
code to be run by the prover and verifier. Using a formalization of
Ae we prove that all well-typed Ae programs result in code that is
secure under the standard cryptographic assumption of collision-
resistant hash functions. We have implemented \e as an extension
to the OCaml compiler, and have used it to produce authenticated
versions of many interesting data structures including binary search
trees, red-black+ trees, skip lists, and more. Performance experi-
ments show that our approach is efficient, giving up little compared
to the hand-optimized data structures developed previously.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures

General Terms Security, Programming Languages, Cryptogra-
phy

1. Introduction

Suppose data provider would like to allow third parties to mirror its
data, providing a query interface over it to clients. The data provider
wants to assure clients that the mirrors will answer queries over the
data truthfully, even if they (or another party that compromises a
mirror) have an incentive to lie. As examples, the data provider
might be providing stock market data, a certificate revocation list,
the Tor relay list, or the state of the current Bitcoin ledger [22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

POPL ’14, January 22-24, 2014, San Diego, CA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535851

Such a scenario can be supported using authenticated data
structures (ADS) [5, 24, 31]. ADS computations involve two roles,
the prover and the verifier. The mirror plays the role of the prover,
storing the data of interest and answering queries about it. The
client plays the role of the verifier, posing queries to the prover
and verifying that the returned results are authentic. At any point
in time, the verifier holds only a short digest that can be viewed as
summarizing the current contents of the data; an authentic copy of
the digest is provided by the data owner. When the verifier sends
the prover a query, the prover computes the result and returns it
along with a proof that the returned result is correct; both the proof
and the time to produce it are linear in the time to compute the
query result. The verifier can attempt to verify the proof (in time
linear in the size of the proof) using its current digest, and will
accept the returned result only if the proof verifies. If the verifier is
also the data provider, the verifier may also update its data stored
at the prover; in this case, the result is an updated digest and the
proof shows that this updated digest was computed correctly. ADS
computations have two properties. Correctness implies that when
both parties execute the protocol correctly, the proofs given by the
prover verify correctly and the verifier always receives the correct
result. Security' implies that a computationally bounded, malicious
prover cannot fool the verifier into accepting an incorrect result.

Authenticated data structures can be traced back to Merkle [18];
the well-known Merkle hash tree can be viewed as providing an
authenticated version of a bounded-length array. More recently, au-
thenticated versions of data structures as diverse as sets [23, 27],
dictionaries [1, 12], range trees [16], graphs [13], skip lists [11, 12],
B-trees [21], hash trees [26], and more [15] have been proposed. In
each of these cases, the design of the data structure, the supporting
operations, and how they can be proved authentic have been recon-
sidered from scratch, involving a new, potentially tricky proof of
security. Arguably, this state of affairs has hindered the advance-
ment of new data-structure designs as previous ideas are not easily
reused or reapplied. We believe that ADSs will make their way into
systems more often if they become easier to build.

This paper presents Ae (pronounced “lambda auth”), a language
for programming authenticated data structures. Ae represents the
first generic, language-based approach to building dynamic authen-
ticated data structures with provable guarantees. The key observa-
tion underlying A\e’s design is that, whatever the data structure or
operation, the computations performed by the prover and verifier
can be made structurally the same: the prover constructs the proof
atkey points when executing a query, and the verifier checks a proof
by using it to “replay” the query, checking at each key point that the
computation is self-consistent.

e implements this idea using what we call authenticated types,
written o7, with coercions auth and unauth for introducing and
eliminating values of an authenticated type. Using standard func-

1 This property is sometimes called soundness but we eschew this term to
avoid confusion with its standard usage in programming languages.
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Such a scenario can be supported using authenticated data
structures (ADS) [5, 24, 31]. ADS computations involve two roles,
the prover and the verifier. The mirror plays the role of the prover,
storing the data of interest and answering queries about it. The
client plays the role of the verifier, posing queries to the prover
and verifying that the returned results are authentic. At any point
in time, the verifier holds only a short digest that can be viewed as
summarizing the current contents of the data; an authentic copy of
the digest is provided by the data owner. When the verifier sends
the prover a query, the prover computes the result and returns it
along with a proof that the returned result is correct; both the proof
and the time to produce it are linear in the time to compute the
query result. The verifier can attempt to verify the proof (in time
linear in the size of the proof) using its current digest, and will
accept the returned result only if the proof verifies. If the verifier is
also the data provider, the verifier may also update its data stored
at the prover; in this case, the result is an updated digest and the
proof shows that this updated digest was computed correctly. ADS
computations have two properties. Correctness implies that when
both parties execute the protocol correctly, the proofs given by the
prover verify correctly and the verifier always receives the correct
result. Security' implies that a computationally bounded, malicious
prover cannot fool the verifier into accepting an incorrect result.

Authenticated data structures can be traced back to Merkle [18];
the well-known Merkle hash tree can be viewed as providing an
authenticated version of a bounded-length array. More recently, au-
thenticated versions of data structures as diverse as sets [23, 27],
dictionaries [1, 12], range trees [16], graphs [13], skip lists [11, 12],
B-trees [21], hash trees [26], and more [15] have been proposed. In
each of these cases, the design of the data structure, the supporting
operations, and how they can be proved authentic have been recon-
sidered from scratch, involving a new, potentially tricky proof of
security. Arguably, this state of affairs has hindered the advance-
ment of new data-structure designs as previous ideas are not easily
reused or reapplied. We believe that ADSs will make their way into
systems more often if they become easier to build.

This paper presents Ae (pronounced “lambda auth”), a language
for programming authenticated data structures. Ae represents the
first generic, language-based approach to building dynamic authen-
ticated data structures with provable guarantees. The key observa-
tion underlying Ae’s design is that, whatever the data structure or
operation, the computations performed by the prover and verifier
can be made structurally the same: the prover constructs the proof
at key points when executing a query, and the verifier checks a proof
by using it to “replay” the query, checking at each key point that the
computation is self-consistent.

e implements this idea using what we call authenticated types,
written o7, with coercions auth and unauth for introducing and
eliminating values of an authenticated type. Using standard func-

1 This property is sometimes called soundness but we eschew this term to
avoid confusion with its standard usage in programming languages.
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operations can be carried out by an untrusted prover, the results of
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by having the prover produce a compact proof that the verifier
can check along with each operation’s result. ADSs thus support
outsourcing data maintenance and processing tasks to untrusted
servers without loss of integrity. Past work on ADSs has focused
on particular data structures (or limited classes of data structures),
one at a time, often with support only for particular operations.

This paper presents a generic method, using a simple exten-
sion to a ML-like functional programming language we call \e
(lambda-auth), with which one can program authenticated oper-
ations over any data structure defined by standard type construc-
tors, including recursive types, sums, and products. The program-
mer writes the data structure largely as usual and it is compiled to
code to be run by the prover and verifier. Using a formalization of
Ae we prove that all well-typed Ae programs result in code that is
secure under the standard cryptographic assumption of collision-
resistant hash functions. We have implemented \e as an extension
to the OCaml compiler, and have used it to produce authenticated
versions of many interesting data structures including binary search
trees, red-black+ trees, skip lists, and more. Performance experi-
ments show that our approach is efficient, giving up little compared
to the hand-optimized data structures developed previously.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures

Such a scenario can be supported using authenticated data
structures (ADS) [5, 24, 31]. ADS computations involve two roles,
the prover and the verifier. The mirror plays the role of the prover,
storing the data of interest and answering queries about it. The
client plays the role of the verifier, posing queries to the prover
and verifying that the returned results are authentic. At any point
in time, the verifier holds only a short digest that can be viewed as
summarizing the current contents of the data; an authentic copy of
the digest is provided by the data owner. When the verifier sends
the prover a query, the prover computes the result and returns it
along with a proof that the returned result is correct; both the proof
and the time to produce it are linear in the time to compute the
query result. The verifier can attempt to verify the proof (in time
linear in the size of the proof) using its current digest, and will
accept the returned result only if the proof verifies. If the verifier is
also the data provider, the verifier may also update its data stored
at the prover; in this case, the result is an updated digest and the
proof shows that this updated digest was computed correctly. ADS
computations have two properties. Correctness implies that when
both parties execute the protocol correctly, the proofs given by the
prover verify correctly and the verifier always receives the correct
result. Security' implies that a computationally bounded, malicious
prover cannot fool the verifier into accepting an incorrect result.

Authenticated data structures can be traced back to Merkle [18];
the well-known Merkle hash tree can be viewed as providing an
authenticated version of a bounded-length array. More recently, au-
thenticated versions of data structures as diverse as sets [23, 27],
dictionaries [1, 12], range trees [16], graphs [13], skip lists [11, 12],
B-trees [21], hash trees [26], and more [15] have been proposed. In

auth : Va.a — e

type tree = Tip of string | Bin of etree X etree

type bit =L | R

let rec fetch (idx:bit list) (t:etree) : string =
match idx, unauth t with

], Tipa— a

L :: idx, Bin(l,_.) — fetch idx |

R ::idx, Bin(_,r) — fetch idx r
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To justify the correctness of their approach, they define a core calculus
and show security and correctness:

Security: If the verifier accepts a proof p and returns v then

e the ideal execution returns v or
e d hash collision occurred.

Correctness: If the prover generates a proof p and a result v then
o the ideal execution returns v and
o the verifier accepts p and returns v as well.

10



Limitations

1. Maintaining a custom compiler frontend imposes development burden.

2. To construct compact proofs, the compiler implements several optimizations
that are not covered by the security and correctness theorems.

3. Even with optimizations, the generated data structures are not always
producing proofs as compact as hand-written implementations.

11
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Published: Tuesday 12th April
stored in the cloud (i.e., on someone else’s computer). 2010

Being of a sceptical mind, you worry whether or not
the answers you get back are from the database you expect. Or is the cloud
lying to you?

Authenticated Data Structures (ADSs) are a proposed solution to this problem.
When the server sends back its answers, it also sends back a “proof” that the
answer came from the database it claims. You, the client, verify this proof. If the
proof doesn't verify, then you’'ve got evidence that the server was lying. If the
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module type MERKLE = functor (A : AUTHENTIKIT) —> sig

open A

(% ... %)

val fetch :

end

path —> tree auth —> string option auth_computation

12



This work

- Two logical-relations models and a proof of security and correctness of the
typed module construction in a general-purpose programming language.

- We address the remaining two limitations:

> We verify several optimizations (as supported by the compiler).

> We show how to prove that manually verified code can be safely linked with
automatically generated code.

 Full mechanization in the Rocqg theorem prover.
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module type AUTHENTIKIT = sig

type 'a auth

(% «.. )
(* *)
val auth

val unauth :
end

'a Serializable.evidence —> 'a —> 'a auth
'a Serializable.evidence —> 'a auth —> 'a auth_computation

14
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type 'a auth

type 'a auth_computation

val return :
val bind

val auth
val unauth :
end

'a —> 'a auth_computation
'a auth_computation —> ('a —> 'b auth_computation) —> 'b auth_computation
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'a Serializable.evidence —> 'a auth —> 'a auth_computation
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module type AUTHENTIKIT = sig
type 'a auth
type 'a auth_computation

val return
val bind

'a —> 'a auth_computation
'a auth_computation —> ('a —> 'b auth_computation) —> 'b auth_computation

module Serializable : sig
type 'a evidence

val auth
val pair
val sum
val string
val 1int
end
val auth

val unauth

end

a auth evidence

'a evidence —> 'b evidence —> ('a * 'b) evidence

'a evidence —> 'b evidence —> [ left of 'a | "right of 'b] evidence
string evidence

int evidence

'a Serializable.evidence —> 'a —> 'a auth
'a Serializable.evidence —> 'a auth —> 'a auth_computation
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module Merkle : MERKLE = functor (A : AUTHENTIKIT) —> struct

open A

type path = [ 'L | R] list

type tree = [ leaf of string | "node of tree auth *x tree auth]
(%X ... %)
(% ... )

end
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module Merkle : MERKLE = functor (A : AUTHENTIKIT) -> struct

open A
type path = [ 'L | R] list
type tree = [ leaf of string | "node of tree auth *x tree auth]

let tree_evi : tree Serializable.evi = Serializable.(sum string (pair auth auth))

let make_leaf (s : string) : tree auth = auth tree_evi ( leaf s)
let make branch (1 r : tree auth) : tree auth = auth tree evi ( node (1, r))

end
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module Merkle : MERKLE = functor (A : AUTHENTIKIT) -> struct

open A
type path = [ 'L | R] list
type tree = [ leaf of string | "node of tree auth *x tree auth]

let tree_evi : tree Serializable.evi = Serializable.(sum string (pair auth auth))

let make_leaf (s : string) : tree auth = auth tree_evi ( leaf s)
let make branch (1 r : tree auth) : tree auth = auth tree evi ( node (1, r))

let rec fetch (p : path) (t : tree auth) : string option auth_computation =
bind (unauth tree evi t) (fun t —>
match p, t with
[1, "~ leaf s —> return (Some s)
"L :: p, node (1, _) — fetch p 1
‘R :: p, node (_, r) — fetch p r
—> return None)

—r

end



type proof = string Llist

module Prover : AUTHENTIKIT =
type 'a auth = 'a *x string
type 'a auth_computation =

() —> proof * 'a
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type proof = string list

module Prover : AUTHENTIKIT =
type 'a auth = 'a *x string
type 'a auth_computation =

let return a () ([1, a)
let bind ¢ f =
let (prf, a)
let (prf', b)

= ) in
(prf @ prf', b;

c (
f a () in

module Serializable

() —> proof * 'a

struct

type 'a evidence = 'a —> string

(%X +.. %)
end

(% ... )

end
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type proof = string list

module Prover : AUTHENTIKIT =
type 'a auth = 'a *x string

type 'a auth_computation = () —> proof * 'a

let return a () ([1, a)
let bind ¢ f =
let (prf, a)
let (prf', b)

= ) in
(prf @ prf', b;

c (
f a () in

module Serializable struct
type 'a evidence = 'a —> string

(% ... )
end

let auth evi a = (a, hash (evi a))

let unauth evi (a, _) () = ([evi al], a)

end
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module Verifier : AUTHENTIKIT =
type 'a auth = string
type 'a auth_computation =
proof —> [0k of proof x 'a | "ProofFailure]

end

17



module Verifier : AUTHENTIKIT =
type 'a auth = string
type 'a auth_computation =
proof —> [0k of proof x 'a | ‘ProofFailure]

let return a prf
let bind ¢ T prf
match c prf with
| "ProofFailure —> "ProofFailure
| "0k (prf', a) —> f a prf'

"0k (prf, a)

module Serializable = struct
type 'a evidence =

{ serialize : 'a —> string; deserialize : string —> 'a option }
(% ... %)
end
(% *)

end
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module Verifier : AUTHENTIKIT =
type 'a auth = string
type 'a auth_computation =
proof —> [0k of proof x 'a | ‘ProofFailure]
let return a prf = "0k (prf, a)
let bind ¢ T prf
match c prf with
| "ProofFailure —> "ProofFailure
| "0k (prf', a) —> f a prf'

module Serializable = struct
type 'a evidence =
{ serialize : 'a —> string; deserialize : string —> 'a option }

(% ... )
end

let auth evi a = hash (evi.serialize a)
let unauth evi h prf =
match prf with
| p :: ps when hash p = h —
match evi.deserialize p with
| None —> 'ProofFailure
| Some a —> "0k (ps, a)
| _ —> 'ProofFailure
end

17



module Ideal : AUTHENTIKIT
type 'a auth = 'a
type 'a auth_computation

let return a () = a

let bind a f () = f (a ())
(% ... )

let auth a = a

let unauth a () = a

end

struct

() —> 'a

18



Takeaway

 |In the end, it is not so difficult to prove that one particular client has the
security and correctness property.

- The challenge is to prove that any well-typed client has these properties!

« Authentikit relies on a parametricity property of OCaml’s module system.

19



Plan

1. Define a type system that can capture the module-based construction.
2. Define a semantic model that captures the type system.
3. Show that the inhabitants of the semantic model have the property of interest.

4. Show that the three Authentikit implementations inhabit the model.
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Requirements

module type AUTHENTIKIT = sig

type 'a auth

type 'a auth_computation

val return :
val bind

‘a —> 'a auth_computation
'a auth_computation —> (‘a —> 'b auth_computation) —> ‘b auth_computation

module Serializable : sig
type 'a evidence

val auth

val pair

val sum

val string

val 1nt
end

val auth
val unauth :
end

'a auth evidence

'a evidence —> 'b evidence —> ('a * 'b) evidence

'a evidence —> 'b evidence —> [ left of 'a | "right of 'b] evidence
string evidence

int evidence

'a Serializable.evidence —> 'a —> 'a auth
‘a Serializable.evidence —> 'a auth —> 'a auth_computation
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Requirements

module type AUTHENTIKIT = sig
type 'a auth
type 'a auth_computation

val return : 'a —> 'a auth_computation
val bind : 'a auth_computation —> (‘a

module Serializable : sig
type 'a evidence

—> 'b auth_computation) —> ‘b auth_computation

val auth : 'a auth evidence
val pair : 'a evidence —> 'b evidence -> ('a *x 'b) evidence
val sum : 'a evidence —> 'b evidence —> [ left of 'a | "right of 'b] evidence
val string : string evidence
val 1int : 1nt evidence
end
val auth : 'a Serializable.evidence —> 'a —> 'a a
val unauth : 'a Serializable.evidence —> 'a auth —> 'aNguth_computation

end
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Requirements module erkle

type path =
type tree =
(% oas )
module type AUTHENTIKIT = sig end
/ type 'a auth
/y type 'a auth_computation
GbStrOCt types val return : 'a —> 'a auth_computation
val bind

MERKLE = functor (A : AUTHENTIKIT) -> struct

['L | "R] list
[ leaf of string | "node of tree auth x tree auth]

recursive types

'a auth_computation —> (‘a —> 'b auth_computation) —> ‘b auth_computation

odule Serializable : sig
type 'a evidence

val auth
val pair
val sum

val string :

val 1nt
end

val auth

val unauth :
end

polymorphism

'a auth evidence
'a evidence —> 'b evidence —> ('a x

'b) evidence

'a evidence —> 'b evidence —> [ left of 'a | "right of 'b] evidence

string evidence
: 1nt evidence

'a Serializable.evidence —> 'a —>

‘a a
'a Serializable.evidence —> 'a auth —> 'a

uth_computation

(higher-order) functions
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Requirements module erkle

type path =
(abstract) type constructors type tree =
(% ... %)
module typ UPPENTAKIT = sig end

/ type 'a auth
/' type 'a auth_co

GbStrOCt typeS val return :
val bind

odule Seria

utation

—> 'a auth_computation

zable : sig

type 'a evidence

val auth
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val sum

val string :

val 1nt
end
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val unauth :
end

polymorphism
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AW > \C

Reminder y ARy
A2 - \P2
A A
STLC: terms can depend on terms, Aw - AP
[Lx:okFe:7 / /

A— > AP

I'HFAx.e:0—-> 1

System F: terms can depend on types,

O,a|ll'Fe:7
O|I'+FAa.e:Va.rt

System [_: types can depend on types,

OF7=0 O|I'Fe:o
O|I'Fe:7 ®F (la.1)o = 7|o/a]
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The Fref language

Kii=%|k=>«k
Ti=al|lla:k.t|Tt7T|C

c::=...\X\+\—>|ref\VKHK‘ﬂK

(kinds)

(types)

(constructors)
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The Fref language

K. =% |K=>K

T .

C ..

=a|la:k.t|t7|C

X+ = et [V | 3|

..|recfx=e| Ae| pack v
.. | hash e

(kinds)

(types)

(constructors)

(values)

(expressions)
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The Fref language

K. =% |K=>K (kinds)
tTi=al|llak.t|TT]|C (types)
cu=..|X|+|—>|ret|V |3 |u (constructors)
vi=...|lrecfx=e| Ae| pack v (values)
e ;= ... | hashe (expressions)

We write, e.g., Va : k.ttomean V_(la : k.7) and t; X 7, for X 7, 7,
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Authentikit in Fe!

module type AUTHENTIKIT = sig
type 'a auth
type 'a auth_computation

val return : 'a —> 'a auth_computation A . e
gal bAmg 3 Y2 GUEh compuEataen = AUTHENTIKIT = dauth, m : x = > . Authentikit auth m
(‘a —> 'b auth_computation) —> o
'b auth_computation Authentikit £ lauth,m : x = * .
module Serializable : sig (Va:%x.a—> ma) X
type 'a evidence
val auth : 'a auth evidence (Va,f:*x.ma—= (a—> mf) - mp) X
val pair : 'a evidence —> 'b evidence -> ('a * 'b) evidence
val sum : 'a evidence —> 'b evidence -> .
["left of 'a | "right of 'b] evidence .
val string : string evidence
val 1int : 1nt evidence _
end (Va : % .evia = a — autha) X
val auth : 'a Serializable.evidence —> 'a —> 'a auth (Va . % .evia — autha — mOI)
val unauth : 'a Serializable.evidence —>

‘a auth —> 'a auth_computation
end
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Our approach

To show security and correctness we

1. Define a program logic that is expressive enough for proving that programs
have the property in question, e.g., a variant of Hoare logic.

2. Define a semantic model of the type system, in which types are given
meaning through Hoare triples of the program logic.

Using the rules of the logic, we then show that the model is sound and that well-
typed terms inhabit the model.
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Collision-free reasoning

We first define a relational Collision-Free Separation Logic (CF-SL) on top of Iris.
{P} e ~ e {0}
CF-SL statements hold “up to” hash collision: given P holds for the initial state,

if e, evaluates to v, and e, evaluates to v, then Q(v,, v,) holds

or a hash collision occurred.
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CO“iSiOn-'I Security: If the verifier accepts a proof p and returns v then

— e the ideal execution returns v or
e d hash collision occurred.

We first define a relational Collision-Free Separation Logic (CF-SL) on top of Iris.
{P} e ~ e {0}
CF-SL statements hold “up to” hash collision: given P holds for the initial state,

if e, evaluates to v, and e, evaluates to v, then Q(v,, v,) holds

or a hash collision occurred.
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CF-SL

CF-SL satisfies all the standard program-logic rules, e.qg.,

Preg~e 1l  ewe &= wi(~e1d}
Pje ~e 10} e vili=w~e Q)



CF-SL

CF-SL satisfies all the standard program-logic rules, e.qg.,

Preg~e 1l  ewe &= wi(~e1d}
Pje ~e 10} e vili=w~e Q)

but introduces a new proposition hashed(s) satisfying

(P % hashed(s)} hash(s) ~ e, {Q} collision(s, $,)

{P} hash s ~ e, {O} hashed(s;) * hashed(s,) - False
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Security

To show security of Authentikit, we use CF-SL to define a logical relation
O|I'Fe ~e:71
and show

. fO|I'Fe:tthen® | I'Ee~e:7

2. If® | ' E e ~e,: tthen e, and e, are secure (as verifier and ideal)

3. @ | @ E Authentikity ~ Authentikit; : AUTHENTIKIT

28



Logical relation, sketch

Intuitively, the judgment @ | & E e; ~ e, : T means

{Truete; ~ e {71}

where [[7]] : Val X Val — IProp is an interpretation of types. E.g.

[[N]](Vsz) é dn = N.Vl :V2:n

l7; = o (v, vy) 2 Vwi,wy. Lz Iw, wy) vy wy ~ vy wyo {5 11}
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Theorem (Security)

If e is a program parameterized by an Authentikit implementation, i.e.,

@ | @ F e : Vauth, m. Authentikit authm - m 7

then for all proofs p, if

then

e Authentikity p —>§f Some(v)

e Authentikit; —>* v
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Theorem (Correctness)

If e is a program parameterized by an Authentikit implementation, i.e.,

Dl DdFHe

then if

then

. Yauth, m . Authentikit authm - m«

e Authentikitp —>§f (p,Vv)

e Authentikity p —* Some(v) and e Authentikit; —* v
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Optimizations of Authentikit

module Verifier : AUTHENTIKIT =
type 'a auth_computation =
pfstate —> [ 0Ok of pfstate *x 'a | ProofFailure]

(% ... %)
» Proof accumulator
let unauth evi h pf =
match Map.find_opt h pf.cache with
. | None —>
¢ PrOOf'reuse bUﬁerlng match pf.pf_stream with
| [1 —> “ProofFailure
| p :: ps when hash p = h —
. match evi.deserialize p with
+ Heterogeneous buffering | None —> "ProofFailure
ome a —>
"0k ({pf_stream = ps;
. cache = Map.add h p pf.cache}, a)
. Stateful buffering g o7 ProofFailure
match evi.deserialize p with
| None —> "ProofFailure
| Some a —> "0k (pf, a)

end
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Manual proofs

The naive implementation of Authentikit does
not emit the minimal proofs, e.g.,

lookup([R, L], to) = ([(h1, h2), (hs, he), s5], Ss5)

Instead, we can manually implement and
“semantically type” the optimal strategy:

[ path — auth tree — m (option string) [|(fetchy, fetch;)

33



Stﬂmary

 Authentikit is a library for implementing ADSs generically.

- Two logical-relations models and a proof of security and correctness of the
typed module construction in a general-purpose programming language.

>~ We verify several optimizations.

> We show how to prove that manually verified code can be safely linked with
automatically generated code.

 Full mechanization in the Rocqg theorem prover.
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[hat’s it, folks -




